登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 食品质量与安全 > 正文

梯度分布水凝胶的制备及用于模拟天然软骨组织结构的研究任务书

 2020-06-27 07:06  

1. 毕业设计(论文)的内容和要求

在软骨修复过程中,前期研究发现单层支架材料对于软骨损伤的修复效果十分有限。

基于此近年来发展了依据软骨多层结构而构建具有多层结构的软骨修复体,这种软骨修复体的基本结构是上层模拟关节软骨的结构,如软骨结构中的浅表层、过渡层,这种支架的下层主要模拟软骨靠近软骨下骨结构,如软骨中的钙化层、放射层,上述骨/软骨支架旨在模拟软骨不同层区的生理和力学环境,使得这种一体化支架满足关节软骨各层区修复的要求,使得关节软骨各层区之间有连续的过渡,采用这种方式修复病变的关节软骨能够取得更为优异的修复效果。

2. 参考文献

[1] Wain wright, D. et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns [J]. J Burn Care Rehabil. 1996, 17, 124-136. [2] Marston, W. A., Hanft, J., Norwood, P. Pollak, R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial [J]. Diabetes Care. 2003, 26, 1701-1705. [3] Stern, R., Mcpherson, M. Longaker, M. T. Histologic study of artificial skin used in the treatment of full-thickness thermal injury [J]. J Burn Care Rehabil. 1990, 11, 7-13. [4] Auger, F. A., Lacroix, D., Germain, L. Skin substitutes and wound healing Skin Pharmacol [J]. Physiol. 2009, 22, 94#8211;102. [5] S Vijayavenkataraman, W F Lu and J Y H Fuh. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes [J]. Biofabrication. 2016, 8, 1-31. [6] 房穂, 许零, 陈欣等.组织工程皮肤支架材料和种子细胞的研究进展[J]. 中国组织工程研究与临床康复. 2009, 13(47): 9329-9333. [7] 石静, 钟玉敏. 组织工程中3D生物打印技术的应用[J]. 中国组织工程研究. 2014, 18(2):271-276. [8] Melchels F B W, Domingos M A N, Klein T J, et al. Additive manufacturing of tissues and organs [J]. Progress in Polymer Science. 2012, 37(8):1079-1104. [9] 王镓垠, 柴磊, 刘利彪等. 人体器官3D打印的最新进展[J]. 机械工程学报. 2014, 50(23): 119-127. [10] Wang, X. H., Yan, Y., Zhang, R. Gelatin-based hydrogels for controlled cell assembly [M]. Biomedical Applications of Hydrogels Handbook. New York: Springer, 2010. [11] Wang, X. H. Overview on biocompatibilities of implantable biomaterials [M]. New York Advance in Biomedicine. InTech, 2013. [12] Wang, X. H., Jukka, T., M#228;kitie, AA., et al. The integrations of biomaterials and rapid prototyping techniques for intelligent manufacturing of complex organs [M]. New York advances in Biomaterials Science and Applications in Biomedicine. InTech, 2013. [13] 何创龙, 王远亮, 杨立华, 等. 人工器官的快速成形制造[J]. 山东生物医学工程. 2003(2): 46-50. [14] 李昕. 3D打印技术及其应用综述[J]. 凿岩机械气动工具. 2014 (4): 36-41. [15] 王博. 浅谈3D打印技术的发展与应用[J]. 机电技术. 2014(5): 158-160. [16]Michael S,Sorg H,Peck C T, et al. Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. Plos One,2013,8:57741-57741. [17]Lee W, Debasitis J C,Lee V K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes tln-ough three-dimensional freeform fabrication. Biomaterials,2009, 30: 1587-1595. [18]Kim G H, Ahn S,Kim Y Y,et al. Coaxial structured collagen-alginate scaffolds: fabrication,physical properties,and biomedical application for skin tissue regeneration. Journal of Materials Chemistry, 2011,21:6165-6172. [19]Leng L, Mcallister A, Zhang B, et al. Mosaic h}drogels: one-step formation of multiscale soft materials.[J]. Advanced Materials, 2012, 24:3650-3658. [20]Binder K W, Zhao W, Aboushwareb T, et al. In situ bioprinting of the skin for burns. Journal of the American College of Surgeons, 2010, 211: 576-582. [21]Wu Y, Zhu S,Wu C, et al. A Bi-Lineage Conducive Scaffold for Osteochondral Defect Regeneration. Advanced Functional Materials,2014, 24:4473-4483. [22] Harris, I. R., Harmoon, A. M., Brown, L. J., et al. Tissue-engineering scaffolds containing self-assembled peptide hydrogel [P]. US 8039258, 2011-10-18. [23] Blanchard, C. R., Timmons, S. F., Smith, R. A. Keratin-based tissue engineering scaffold [P]. US 6379690, 2001-08-13. [24] Truong V. X., Ablett M. P., Richardson S. M., et al. Simultaneous orthogonal dual-click approach to tough, in-situ-forming hydrogels for cell encapsulation [J]. Journal of the American Chemical Society. 2015, 137(4): 1618-22. [25] Liu W. G et al. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel, Advanced Materials 2015, 27, 3566#8211;71. [26] Rui Wang, Bo Zhou, De-lei Xu, Hong Xu*, Lei Liang, Xiao-hai Feng, Ping-kai Ouyanga and Bo Chi*. Antimicrobial and biocompatible #603;-polylysine/#611;poly- glutamic acid-based hydrogel system for wound healing [J]. Journal of Bioactive and Compatible Polymers. January 25, 2016, doi: 10.1177/0883911515610019. [27] Rui Wang, De-lei Xu, Lei Liang, Ting-ting Xu, Wei Liu, Ping-kai Ouyang, Bo Chi* and Hong Xu*. Enzymatically crosslinked epsilon-Poly-L-lysine hydrogels with inherent antibacterial properties for wound infection prevention [J]. RSC advances. 2016, 6, 8620-8627. [28] Ma, P. X. Biomimetic materials for tissue engineering [J]. Advanced Drug Delivery Reviews. 2008, 60(2): 184~198. [29] Li, C. Poly(L-glutamic acid)-anticancer drug conjugates [J]. Advanced Drug Delivery Reviews. 2002, 54(5): 695~713. [30] Bello, Y. M. Falabella, A. F. The role of graftskin (Apligraf) in difficult-to-heal venous leg ulcers. J Wound Care. 2002, 11,182-183.

3. 毕业设计(论文)进程安排

1. 2017.12-2018.1 文献调研及路线设计; 2. 2018.2-2018.6 实验合成及工艺路线优化; 3. 2018.6 数据整理及论文写作。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图