基于不同羧基含量纳米纤维素的C/Fe3O4复合气凝胶结构与性能研究开题报告

 2020-02-10 11:02
1.目的及意义(含国内外的研究现状分析)

随着人类生活水平的提高,能源问题越来越得到人们的重视,不可再生能源的消耗殆尽,环境问题的严重恶化,使人们对于节约能源,保护环境的观念越来越强,因此研发出新型高效可持续的能源供应体系成为科研领域的重中之重[1,2]。锂离子电池(LIB)由于具有高比容量,良好的循环性能和环保性,已成为移动电话,笔记本电脑和电动汽车等许多领域中最重要的储能设备之一[3,4]。纳米材料的出现给LIB带来了新的生机。已经表明,尺寸是改善电池性能的关键因素,并且在临界尺寸以下不会发生颗粒的破裂[5]。纳米过渡金属氧化物(TMOs),如Fe2O3和Fe3O4,由于其理论比容量高,被认为是潜在的负极材料。遗憾的是,低电导率和严重的体积变化经常导致严重的电化学团聚,粉化和活性材料从集电器剥落,所以材料容量差,速率性能差,因此需要对氧化铁负极材料进行适当改性,以满足对锂离子电极材料的需求。

碳材料具有各种存在形式以及丰富的维度,在电化学领域特别是能量的储存方面具有十分广阔的应用前景,引起了各国研究人员的广泛关注。多孔碳材料因其具有可调控的微观组织结构、表面易功能化、高导电性、高导热性和不同的形态等优点,加上环保及成本低廉[6,7],使得其在作为电池材料方面有着巨大优势,已经成功用于负极材料。然而,低理论容量(372mAhg-1),副反应,速率性能差,初始库仑效率低和循环稳定性差限制了它们在LIB中的进一步发展应用[8]。增加碳电极材料电容的常用方法主要是制备小孔径高比表面积的碳材料,特别是近年来多孔碳中高度有序的介孔碳(OMCs)。有序介孔碳具有有序规则的孔道结构、在介孔尺度内可控的孔径、较大的比表面积与孔隙率、较好的热稳定性与化学稳定性、较低电子转移电阻、较大的吸附能力、较好的化学惰性,在催化、吸附、分离、电极材料、医药载体、主客体化学等多领域有着广泛的应用前景[9],但单一的介孔碳材料能量密度低、电化学性能差,为了改善这个缺点,研究人员试图利用多种组分共修饰介孔碳以获得更高的电化学活性及其他性能,碳基TMOs与原始Fe3O4材料相比,固定在石墨烯表面上,经碳涂覆的Fe3O4纳米颗粒在100次循环后显示出870.4mAhg-1shy;的高比容量[10]

您需要先支付 5元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找,微信号:bysjorg 、QQ号:3236353895;