登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 理工学类 > 能源与环境系统工程 > 正文

钼改性高钒SCR催化剂低温脱硝性能研究任务书

 2020-04-17 04:04  

1. 毕业设计(论文)的内容和要求

采用钼氧化物掺杂改性高钒scr催化剂,探究三氧化钼添加对高钒催化剂低温脱硝活性的影响,借助表征测试分析三氧化钼助剂改性对催化剂理化特性的影响,解释改性样品低温活性变化原因。

条件允许情况下测试改性催化剂h2o、so2存在情况下的低温活性变化。

要求完成1.2万字以上的研究论文(不含以附录方式提交的实验数据、测试数据、图表、照片等)。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988, 2: 369-379. [2] 段传和, 夏怀祥, 葛亮. 燃煤电站SCR烟气脱硝工程技术[M]. 北京: 中国电力出版社, 2004. [3] 张强. 燃煤电站SCR烟气脱硝工程技术及工程应用[M]. 北京: 化学工业出版社, 2007. [4] 钟秦. 燃煤烟气脱硫脱硝技术及工程实例[M]. 北京: 化学工业出版社, 2007. [5] 李锋. 以纳米 TiO2为载体的燃煤烟气脱硝SCR催化剂的研究[D]. 博士学位论文, 南京: 东南大学, 2006. [6] 姚杰. SCR燃煤烟气脱硝催化剂制备及脱硝系统的数值模拟[D]. 博士学位论文,南京: 东南大学, 2014. [7] 朱崇兵. 蜂窝式SCR烟气脱硝催化剂的制备与工程应用研究[D]. 博士学位论文,南京: 东南大学, 2014. [8] 高珊. 铈钒锆固体超强酸催化剂的脱硝活性及其抗中毒能力[D]. 博士学位论文, 杭州: 浙江大学, 2016. [9] 甘丽娜. 低温V2O5-WO3/TiO2脱硝催化剂开发与应用研究[D]. 博士学位论文, 北京: 中国科学院大学, 2016. [10] Liu C, Shi J W, Gao C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Applied Catalysis A: General, 2016, 522: 54-69. [11] Shan W P, Song H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catalysis Science Technology, 2015, 5(9): 4280-4288. [12] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: reaction mechanism and catalyst deactivation[J]. RSC Advances, 2017, 7(42): 26226-26242. [13] 任雯. 硫酸亚铁SCR催化剂脱硝机理及制备研究[D]. 博士学位论文,北京: 清华大学, 2010. [14] Ciambelli P, Fortuna M, Sannino D, et al. The influence of sulphate on the catalytic properties of V2O5-TiO2 and WO3-TiO2 in the reduction of nitric oxide with ammonia[J]. Catalysis today, 1996, 29(1): 161-164. [15] Wang C Z, Yang S J, Chang H Z, et al. Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225: 520-527. [16] Kompio P G W A, Br#252;ckner A, Hipler F, et al. A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3[J]. Journal of Catalysis, 2012, 286: 237-247. [17] Kristensen S B, Kunov-Kruse A J, Riisager A J, et al. High performance vanadia#8211;anatase nanoparticle catalysts for the Selective Catalytic Reduction of NO by ammonia[J]. Journal of Catalysis, 2011, 284(1): 60-67. [18] Lietti L, Nova I, Forzatti P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5#8211;WO3 and V2O5#8211;MoO3 catalysts[J]. Topics in Catalysis, 2000, 11(1-4): 111-122. [19] Dall'Acqua L, Nova I, Lietti L, et al. Spectroscopic characterisation of MoO3/TiO2 deNOx-SCR catalysts: Redox and coordination properties[J]. Physical Chemistry Chemical Physics, 2000, 2(21): 4991-4998. [20] Lietti L, Nova I, Ramis G, et al. Characterization and Reactivity of V2O5#8211;MoO3/TiO2 DeNOx SCR Catalysts[J]. Journal of Catalysis, 1999, 187(2): 419-435. [21] Liu Z M, Zhang S X, Li J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2014, 144: 90-95. [22] Djerad S, Tifouti L, Crocoll M, et al. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2004, 208(): 257-265. [23] Seo P W, Lee J Y, Shim K S, et al. The control of valence state: How V/TiO2 catalyst is hindering the deactivation using the mechanochemical method[J]. Journal of Hazardous Materials, 2009, 165(1-3): 39-47. [24] Lian Z H, Liu F D, He H, et al. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures[J]. RSC Advances, 2015, 5(47): 37675-37681. [25] Cheng K, Liu J, Zhang T, et al. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5#8211;WO3/CeO2#8211;TiO2 catalyst[J]. Journal of Environmental Sciences, 2014, 26(10): 2106-2113. [26] Kwon D W, Park K H, Hong S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chemical Engineering Journal, 2016, 284: 315-324. [27] Xu T F, Wu X D, Gao Y X, et al. Comparative study on sulfur poisoning of V2O5-Sb2O3/TiO2 and V2O5-WO3/TiO2 monolithic catalysts for low-temperature NH3-SCR[J]. Catalysis Communications, 2017, 93: 33-36. [28] Kwon D W, Hong S C. Enhancement of performance and sulfur resistance of ceria-doped V/Sb/Ti by sulfation for selective catalytic reduction of NOx with ammonia[J]. RSC Advances, 2016, 6(2): 1169-1181. [29] Kwon D W, Nan K B, Hong S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3[J].Applied Catalysis B: Environmental, 2015, 166#8211;167: 37-44.

3. 毕业设计(论文)进程安排

1、第1~2周:完成开题报告和外文翻译工作,熟悉管式炉热解操作,制备得到生物质热解炭; 2、第3~4周:完成不同活性组分负载方式的热解炭基催化剂制备; 3、第5~6周:进行热解炭基低温脱硝催化剂活性测试,对比不同催化剂性能差别; 4、第7~8周:调整制备过程工艺参数,制备不同的热解炭基低温脱硝催化剂,并进行相应的活性测试; 5、第9~10周:制备不同MoO3掺杂量的高钒SCR颗粒催化剂; 6、第11~12周:测试MoO3改性的高钒催化剂低温脱硝活性; 7、第13~14周:进行必要的催化剂表征工作,解析催化剂性能与结构性质的关系; 8、第15~16周:撰写毕业论文。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图