登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 理工学类 > 能源与环境系统工程 > 正文

载体硫酸根含量变化对钒钛催化剂脱硝活性影响任务书

 2020-04-17 04:04  

1. 毕业设计(论文)的内容和要求

传统的商业烟气脱硝催化剂为钒钨钛催化剂,其以二氧化钛为载体,五氧化二钒为主要的活性组分,三氧化钨为助催化剂。

工业二氧化钛载体俗称钛白粉,基于现在的硫酸法钛白粉制造工艺,作为脱硝催化剂载体的二氧化钛中含有一定量的硫酸根,而硫酸根的存在对钒钛催化剂表面活性组分的分散以及催化剂脱硝活性的影响尚不清楚。

本课题通过对载体进行洗涤,改变原料中硫酸根含量,制备不同活性组分含量的钒钛催化剂,借助活性测试,硫水抗性测试及表征分析,判断载体硫酸根含量对产品催化剂脱硝性能的影响。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Bosch H, Janssen F. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988, 2: 369-379. [2] 段传和, 夏怀祥, 葛亮. 燃煤电站SCR烟气脱硝工程技术[M]. 北京: 中国电力出版社, 2004. [3] 张强. 燃煤电站SCR烟气脱硝工程技术及工程应用[M]. 北京: 化学工业出版社, 2007. [4] 钟秦. 燃煤烟气脱硫脱硝技术及工程实例[M]. 北京: 化学工业出版社, 2007. [5] 李锋. 以纳米 TiO2为载体的燃煤烟气脱硝SCR催化剂的研究[D]. 博士学位论文, 南京: 东南大学, 2006. [6] 姚杰. SCR燃煤烟气脱硝催化剂制备及脱硝系统的数值模拟[D]. 博士学位论文,南京: 东南大学, 2014. [7] 朱崇兵. 蜂窝式SCR烟气脱硝催化剂的制备与工程应用研究[D]. 博士学位论文,南京: 东南大学, 2014. [8] 高珊. 铈钒锆固体超强酸催化剂的脱硝活性及其抗中毒能力[D]. 博士学位论文, 杭州: 浙江大学, 2016. [9] 甘丽娜. 低温V2O5-WO3/TiO2脱硝催化剂开发与应用研究[D]. 博士学位论文, 北京: 中国科学院大学, 2016. [10] Liu C, Shi J W, Gao C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Applied Catalysis A: General, 2016, 522: 54-69. [11] Shan W P, Song H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catalysis Science Technology, 2015, 5(9): 4280-4288. [12] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: reaction mechanism and catalyst deactivation[J]. RSC Advances, 2017, 7(42): 26226-26242. [13] 任雯. 硫酸亚铁SCR催化剂脱硝机理及制备研究[D]. 博士学位论文,北京: 清华大学, 2010. [14] Wang H, Qu Z P, Dong S C, et al. Mechanistic Investigation into the Effect of Sulfuration on the FeW Catalysts for the Selective Catalytic Reduction of NOx with NH3[J]. ACS Applied Materials Interfaces, 2017, 9(8): 7017-7028. [15] Gao R H, Zhang D S, Liu X G, et al. Enhanced catalytic performance of V2O5#8211;WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3[J]. Catalysis Science Technology, 2013, 3(191): 191-199. [16] Shu Y, Sun H, Quan X, et al. Enhancement of catalytic activity over the iron-modified Ce/TiO2 catalyst for selective catalytic reduction of NOx with ammonia[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25319-25327. [17] Kro#776;cher O, Elsener M. Combination of V2O5/WO3#8722;TiO2, Fe#8722;ZSM5, and Cu#8722;ZSM5 catalysts for the selective catalytic reduction of nitric oxide with ammonia[J]. Industrial Engineering Chemistry Research, 2008, 47(22): 8588-8593. [18]司知蠢. CuOx/WOx-ZrO2催化剂制备及其NH3-SCR催化机理研究[D]. 博士学位论文, 北京: 清华大学, 2010. [19]马朝霞. 氧化铜基催化剂选择性催化还原氮氧化物研究[D]. 博士学位论文, 杭州: 浙江大学, 2015. [20] Cheng K, Liu J, Zhang T, et al. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5#8211;WO3/CeO2#8211;TiO2 catalyst[J]. Journal of Environmental Sciences, 2014, 26(10): 2106-2113. [21] Heon P H, Soon H C, Young J O. Selective catalytic NOx reduction on Antimony promoted V2O5-Sb/TiO2 catalyst[J]. Rare Metals, 2006, 25(6): 84-88. [22] Kwon D W, Hong S C. Enhancement of performance and sulfur resistance of ceria-doped V/Sb/Ti by sulfation for selective catalytic reduction of NOx with ammonia[J]. RSC Advances, 2016, 6(2): 1169-1181. [23] Lee K J, Kumar P A, Maqbool M S, et al. Ceria added Sb-V2O5/TiO2 catalysts for low temperature NH3 SCR: Physico-chemical properties and catalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142#8211;143: 705-717. [24] Du X S, Gao X, Fu Y C, et al. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. Journal of Colloid and Interface Science, 2012, 368(1): 406-412. [25] Putluru S S R, Schill L, Godiksen A, et al. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2016, 183: 282-290. [26] Dong G J, Zhang Y F, Zhao Y, et al. Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1455-1463. [27] Gan L N, Yang J, Ma D C, et al. High-performance V2O5-WO3/TiO2 catalyst for diesel NOx reduction at low temperatures[J]. Energy Procedia, 2014, 61: 1115-1118. [28] Liu X, Li J H, Li X, et al. NH3 selective catalytic reduction of NO: A large surface TiO2 support and its promotion of V2O5 dispersion on the prepared catalyst[J]. Chinese Journal of Catalysis, 2016, 37(6): 878-887. [29] Kristensen S B, Kunov-Kruse A J, Riisager A, et al. High performance vanadia#8211;anatase nanoparticle catalysts for the Selective Catalytic Reduction of NO by ammonia[J]. Journal of Catalysis, 2011, 284(1): 60-67. [30] Song I, Youn S, Lee H, et al. Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2017, 210: 421-431. [31] Seo P W, Park K H, Hong S C. SO2 durability enhancement of ball milled V/TiO2 catalyst[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(2): 283-287. [32] Bai S L, Wang Z B, Li H Y, et al. SO2 promotion in NH3-SCR reaction over V2O5/SiC catalyst at low temperature[J]. Fuel, 2017, 194: 36-41. [33] Lian Z H, Liu F D, He H. Effect of preparation methods on the activity of VOx/CeO2 catalysts for the selective catalytic reduction of NOx with NH3[J]. Catalysis Science Technology, 2015, 5(1): 389-396. [34] Lian Z H, Liu F D, He H. Enhanced Activity of Ti-Modified V2O5/CeO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3[J]. Industrial Engineering Chemistry Research, 2014, 53(50): 19506-19511. [35] Lian Z H, Liu F D, He H, et al. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures[J]. RSC Advances, 2015, 5(47): 37675-37681. [36] Jiang B Q, Li Z G, Lee S C. Mechanism study of the promotional effect of O2 on low-temperature SCR reaction on Fe#8211;Mn/TiO2 by DRIFT[J]. Chemical Engineering Journal, 2013, 225(0): 52-58. [37] Chen T, Guan B, Lin H, et al. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chinese Journal of Catalysis, 2014, 35(3): 294-301. [38] Chen L, Li J H, Ge M F. DRIFT Study on Cerium#8722;Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3[J]. Environmental Science Technology, 2010, 44(24): 9590-9596. 翻译文件:Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: Acidity, surface species and catalytic activity [J]. Chemical Engineering Journal, 2013, 225: 520-527.

3. 毕业设计(论文)进程安排

1、第1~2周:完成开题报告和外文翻译工作,熟悉催化剂的制备过程,能够独立制备颗粒催化剂; 2、第3~4周:完成不同载体、不同活性组分负载量的脱硝催化剂制备; 3、第5~6周:进行制备的脱硝催化剂活性测试,对比不同催化剂性能差别; 4、第7~8周:选择低温脱硝活性较好的催化剂,对比不同载体催化剂样品的H2O、SO2抗性差异; 5、第9~10周:学习催化剂表征技术相关知识,联系、落实不同的催化剂表征工作; 6、第11~12周:完成催化剂表征工作,解析催化剂性能与结构性质的关系; 7、第13~14周:撰写毕业论文。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图