卫星展板结构变形监测实验系统设计开题报告

 2020-02-10 11:02
1.目的及意义(含国内外的研究现状分析)

1.1 研究的背景及意义
近些年,航天事业快速发展,卫星承担的任务日趋增多,其规模也日益增大。随着卫星规模的增大,其运行过程中的能量需求也不断增大。作为卫星的主要能量来源,硅光电池通过将光能转化为电能从而满足对卫星的能量提供,作为其基板的太阳能帆板的尺寸也必然趋向大型化,目前翼展长达数十米的太阳能帆板已得到广泛应用,由此对于帆板结构的稳定运行状况和形态要求也更加严格。太阳能帆板从结构特点上来看,一般具有阻尼小、刚度低、共振频率低的特征,同时由于其运行环境即太空环境外界阻尼几乎可以忽略不计,极易导致结构受到扰动后发生长期且难以恢复的结构变形和大幅低频振动。例如,卫星在轨运行期间一旦受到轨道或姿态调整导致的晃动、折叠机构展开等自身因素造成的扰动,或者受到空间温度剧烈变化、微粒子流、以及宇宙风等外界因素作用,便有可能产生结构变形。尤其是在太空环境低阻尼的情况下,形变与振动都难以自动恢复,若不及时进行调整,不但影响柔性结构本身的工作性能,而且极有可能影响到卫星主体的运行,从而影响卫星的姿态稳定和定向精度;此外,持续时间长且剧烈的形变也有可能使结构发生疲劳破坏,导致卫星性能下降甚至失效,直接威胁卫星在轨任务的完成。因此,对大型航空航天器中的柔性结构的形变监测技术的研发,向来是航天技术发展中的一个重点领域和待突破的难点,“在太空失重环境条件下使各种柔性结构、天线和望远镜保持运行稳定”被美国国家研究理事会列为影响太空探索的关键技术之一。
对于远在太空的航天器件,基于传统的直接测量方法或电测方法难以实现对结构体的形态变化进行实时的测量监测,所以,间接测量法在这个领域成为了另一个重要研究方向。在间接测量方法中,主要是通过在结构体表面设置传感器,然后利用传感器所测得的物理信息结合形态重构算法实现结构体的变形测量。基于太空环境的复杂性,常规的传感器往往难以实现精确的测量,且考虑到太阳能帆板的柔性特征,所放置传感器需要轻量化与小型化。在各类传感器中,布拉格光纤光栅传感器(Fiber Bragg Grating, FBG)作为一种新型的传感器,它基于光纤中的光线传播原理设计,与传统的传感器相比,它具有更强的抗干扰性、稳定性与耐久性。而在太空环境中,其优势更加明显,它的质量与体积都很小,在测量时,可以大量埋入或粘贴于被测物体上,形成一个传感网络。在卫星的运行过程中,太阳能帆板的每个部位都可能出现突发的应变变化,而通过光纤光栅传感器则可以精确的检测到这些变化,并通过波长或波形的变化反应出来。不仅可以直观反应出变形发生的位置,并且能通过数据快速得到变形的程度与情况。另外,不仅仅是形变监测,通过在太阳能帆板中广泛排布的FBG传感器形成的传感网络,还可以监测太阳能帆板的振动情况、温度变化及各类环境情况,使我们可以对卫星太阳能帆板的实时情况有更确切的了解。采用内置式光纤光栅监测复合材料结构的健康状态在土木工程应用中已经较为广泛,但在航天航空领域起步较晚,这种技术作为复合材料结构无损监测技术的重要发展趋势,最终会实现结构形变的实时监控,为卫星太阳能帆板的安全性与稳定性提供重要的技术支持。
伴随着航空航天事业的快速发展和大型柔性结构件的不断涌现,结构运行状况的实时安全性监控与稳定性监测始终是该领域急迫需要解决的核心关键问题,并且通过对形态结构的监测,有利于后续对结构振动与形态调整的有效控制。
您需要先支付 5元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找,微信号:bysjorg 、QQ号:3236353895;