登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 机械机电类 > 车辆工程 > 正文

ZYP5031XXPY型纯电动物流车动力系统的匹配及仿真毕业论文

 2021-03-21 09:03  

摘 要

纯电动物流车具有工作无污染、运行平稳、能源价格低、充电续航方便等诸多优点,所以在传统资源储量减少和空气质量不断下降的当下,相比于以燃油为动力的传统物流运输车表现出了明显的使用优势,加之国家在政策上进行大力鼓励和支持,纯电动物流专用车已然成为市场上各种新能源汽车当中的紧俏车型,在产业化发展的过程中表现出了巨大的潜力,是电动汽车技术提升和使用普及的重要方向。有关纯电动物流专用车的设计计算和仿真分析可以帮助提高电动物流车的性能,从而进一步提升产品竞争力,对于电动物流车乃至电动汽车产业的发展都会起到十分积极的促进作用。

本文依托于某公司的ZYP5031XXPY型纯电动物流车的改进开发设计项目,以纯电动物流车为研究对象,在给定设计主要目标和车型关键参数的情况下,完成了电动物流车动力与传动装置的选型和匹配计算工作,并对参数优化改进途径和车辆仿真方法进行了讨论。首先分析并确定了动力装置主要部件的组成和类型,应用汽车动力学相关知识匹配设计动力系统的技术参数,借助MATLAB绘图来探究不同参量改变对性能的影响规律。然后文章运用ADVISOR车辆仿真器开发后驱整车模块,搭建纯电动汽车的数据和计算模型并仿真整车在匹配初定参数下的性能;针对该软件在仿真性能时缺乏过程展示的不足,研究又借助Simulink平台建立基于stateflow状态机换挡的整车动力学模型,仿真极限工况下的车辆性能变化过程,并分析其中的规律来全面展示车辆动力和续航性能。此外,研究运用数学优化方法建立性能改进模型,在MATLAB环境下利用基于目标达到法和NASG-Ⅱ算法的两种多目标优化方法优化匹配获得的参数,讨论不同方法所得结果对于整车性能的影响。最后在AVL-Cruise仿真平台上构建物流汽车模型,分别仿真车辆在优化前后的性能,经过对比得到动力和经济性能的提升效果,进而验证了动力参数优化计算的作用。

关键词: 纯电动物流车 动力匹配 多目标优化 仿真分析

Abstract

The electric logistics vehicle has lots of advantages for application, such as non-pollution, stable operation, low energy cost, convenient charging and so on. Therefore, in the case of resources shortage and environment pollution nowadays, it is obvious that the electric logistics vehicle is a better choice compared with the traditional fuel logistics vehicle. On account of the strong policy government have published to support and encourage development, the electric logistics vehicle becomes the popular one in the new energy vehicle market and shows great potential in the development of industrialization, which provides an important direction in technology promotion and use popularization for electric vehicles. The design and simulation about electric logistics vehicle can help improve the vehicle performance as well as enhancing the product competitiveness, which has a positive significance for the development of the electric logistics vehicle industry and even the electric vehicle industry.

This paper is based on a project aimed at redesigning and improving the capability of an electric logistics vehicle named ZYP5031XXPY for one company. Focused on this new type of logistics vehicle, the study finishes the powertrain selection and matching given the main design target and the key parameters in the vehicle. In addition, the parameter optimization way and simulation method are also discussed. In this article, the composition and type of the main components of the power plant are analyzed and determined. The technical parameters of the dynamic system are designed by using the relevant knowledge of the automobile dynamics. The influence of the different parameters on the performance is explored through MATLAB. Besides, ADVISOR is used to develop a specific model for the vehicle driven by the rear wheel, by which the given vehicle data are applied and the vehicle performance is simulated in matching parameters. In view of the lack of process in the simulation, the vehicle dynamics model based on stateflow shift is established on the Simulink platform. The new model presents vehicle performance change in the limiting condition from which the vehicle power and endurance performance is displayed fully. Furthermore, the mathematical optimization method is used to establish the performance improvement model. And two multi-objective optimization methods respectively based on the target reach method and NASG-Ⅱalgorithm are used to optimize the initial result in MATLAB environment, which also leads to a discussion about different calculation influences on electric vehicle. Finally, the vehicle dynamic and economic properties after optimization are simulated to analyze corresponding effects and prove the correctness of the calculation.

Key words: electric logistics vehicle, powertrain matching, multi-objective optimization, analysis and simulation

目录

摘要 I

Abstract II

第1章 绪论 1

1.1 本研究的背景及意义 1

1.2 研究现状概述 2

1.2.1 纯电动物流车的发展现状 2

1.2.2 纯电动物流车的动力系统参数匹配现状 3

1.3 本文主要的研究工作 4

第2章 纯电动物流车的组成和动力系统部件分析 5

2.1 纯电动物流车的结构组成 5

2.2 动力系统主要部件分析 6

2.2.1 电动机作用及常见类型 6

2.2.2 动力电池的作用以及常见类型 7

2.2.3 减速机构及其种类 9

2.3 纯电动物流车的工作特点 9

2.4 本章小结 10

第3章 纯电动物流车的动力系统匹配 11

3.1 纯电动物流车的设计要求和相关参数 11

3.2 纯电动汽车整车参数计算方法 12

3.3 动力系统各部件的参数匹配与计算 13

3.3.1 驱动电动机的匹配选型 13

3.3.2 动力电池的匹配选型 19

3.3.3 减速传动机构的匹配选型 22

3.4 本章小结 26

第4章 纯电动汽车初步匹配结果的仿真分析 27

4.1 基于ADVISOR平台的后驱整车模型 27

4.1.1 ADVISOR脚本文件的创建和数据输入 27

4.1.2 纯电动车型后轮驱动型式的再开发 29

4.1.3 基于ADVISOR后驱开发平台的性能仿真与分析 33

4.2 基于状态机换挡的Simulink模型 37

4.2.1 有限状态机原理及stateflow换挡模型 37

4.2.2 基于stateflow换挡模块的整车模型及其仿真 38

4.3 两种仿真方法的比较分析与结论 43

4.4 本章小结 43

第5章 动力系统匹配初定参数的优化改进 45

5.1 动力系统优化数学模型的建立 45

5.1.1 设计变量的选取 45

5.1.2 目标函数的确定 45

5.1.3 约束条件的构造 48

5.2 匹配参数的不同算法优化与分析 49

5.2.1 基于目标达到法的多目标优化 49

5.2.2 基于改进的NSGA-Ⅱ遗传算法的多目标优化 51

5.2.3 两种优化方法的比较分析与结论 55

5.3 基于优化参数的整车性能仿真 56

5.3.1 部件和整车的模块选择和模型搭建 56

5.3.2 整车模型的性能仿真和对比分析 58

5.3.3 Cruise仿真验证结论 61

5.4 本章小结 62

第6章 总结和展望 63

6.1 总结 63

6.2 创新之处 64

6.3 展望 64

参考文献 66

附录 68

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图