基于深度学习的目标检测开题报告

 2020-02-18 07:02

1. 研究目的与意义(文献综述)

由于计算机技术的不断发展,人工智能逐渐走入大众的视野,深度学习逐渐成为研究的主要方向。随着各种电子设备在生产生活甚至军备技术中的广泛应用,使用者对于图像处理技术越来越重视,而目标检测作为机器视觉和模式识别领域非常重要的基础研究,研究人员在追求精确度的基础上,对于识别速度也提出了更高的要求。

目标检测着重研究的方向是如何检测识别图像中存在的物体和如何确定物体所在的位置,因此在进行目标检测的过程中,既要确定物体类别,又要确定物体在图像中的像素范围。

传统的机器学习使用统计学习的方法,是一种基于特征提取的目标识别,需要通过人工设定的方法从目标图像中提取特征参数,并将提取出的特征参数作为机器学习的方法进行建模和识别。对于这种传统的目标检测方法,主要问题在于图像所包含的数据具有复杂性,目标的特征难以提取、样本的类别不均衡或者图像中含有噪声都会影响最后的检测结果,训练样本过少或输入维度高也会导致模型不具备较好的泛化能力,从而导致识别精度低。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

本次研究首先需要了解目标检测技术的主要步骤:区域建议、特征表示和区域分类。在本次设计的第一部分,是要对提供的图像中目标位置的可能区域提供建议,即提供候选区,然后利用适当的特征模型获得特征表示,最后通过分类器进行判断以确定目标区域中是否有特定类型特定目标。

这次主要使用的模型是Fast R-CNN,他是基于R-CNN的优化版本,主要特点是先对整幅图像进行卷积,再从特征映射中选择候选区域,大幅度地提高了训练速度,引入相当于单层SPP NET的ROI,共享候选区域在网络的传播过程,提取候选区域的固定维度特征表示,引入多任务损失函数,将卷积网络、分类器和边框回归并入同一网络。在微调阶段, Fast R-CNN 采用了新的层级采样方法, 首先采样目标图像, 接着从采样出来的图像中对RoI进行采样, 由于同一幅图像的ROI共享计算和内存, 使训练更加高效。相较于R-CNN,Fast R-CNN提高了均值平均精度,虽然在确定候选区域上还有所欠缺,但已经是性能相对较高的算法。

在这次设计中,我希望能利用Matlab实现Fast R-CNN模型的构建,通过提供的数据库进行基本的样本训练,通过给定图像检验是否能检测出较常规的目标任务以检验设计成果。

3. 研究计划与安排

第1周—第3周 搜集资料,查阅文献,撰写开题报告,提交开题报告;

第4周—第11周 硬软件总体设计,分步实施,实验及分析;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

[1]张慧,王坤峰,王飞跃.深度学习在目标视觉检测中的应用进展与展望[j].自动化学报,2017,43(8):1289-1305.

[2]黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述[j].计算机学报,2014,36(6):1225-1240.

[3]lecun y,bengio y,hinton g. deep learning[j].nature,2015,521(7553):436-444.

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。