登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 高分子材料与工程 > 正文

聚多巴胺/磷酸钙复合微球的制备任务书

 2020-05-17 09:05  

1. 毕业设计(论文)的内容和要求

聚多巴胺(pda)是贝壳、蚌等生物分泌的粘性蛋白的主要成分,具有极强的粘附性,能稳定地固定在各种基质上。虽然多巴胺在材料表面超强附着的作用机理还有待于进一步的研究,但已有研究表明,多巴胺对基体材料表面的附着行为来源于多巴胺的邻苯二酚和氨基官能团,这种结构可以和有机无机表面建立共价和非共价的相互作用,从而使聚多巴胺强力附着在材料表面上。

磷酸钙是无机硬组织的组成成分,它具有良好的生物性能,常被用来制备各种形貌的生物材料,而球形材料比其它材料具有更好的流动性、填充性和较大的比表面积。两者复合可以增强其稳定性能、生物相容性及机械强度。因此本实验目的为制备多孔并具有应用价值的聚多巴胺/磷酸钙复合微球,且稳定性好,生物活性好。同时实验中研究反应时间、反应温度对产物的影响,最后探索了磷酸钙复合微球的形成机制及制备。

本课题拟将聚多巴胺以自组装的方法包裹在碳酸钙微球表面形成复合微球,再以其为模板使用pbs矿化为磷酸钙复合微球。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

1. Vasir, J.K., K. Tambwekar, and S. Garg, Bioadhesive microspheres as a controlled drug delivery system. International Journal Of Pharmaceutics, 2003. 255(1-2): p. 13-32.
2. Freiberg, S. and X. Zhu, Polymer microspheres for controlled drug release. International Journal Of Pharmaceutics, 2004. 282(1-2): p. 1-18.
3. Lu, S.L., et al., Preparation and characteristics of tryptophan-imprinted Fe3O4/P(TRIM) composite microspheres with magnetic susceptibility by inverse emulsion-suspension polymerization. Journal Of Applied Polymer Science, 2006. 99(6): p. 3241-3250.
4. Ciofani, G., et al., A drug delivery system based on alginate microspheres: Mass-transport test and in vitro validation. Biomedical Microdevices, 2007. 9(3): p. 395-403.
5. Shi, P.J., et al., Improved properties of incorporated chitosan film with ethyl cellulose microspheres for controlled release. International Journal of Pharmaceutics, 2009. 375(1-2): p. 67-74.
6. Sun, Q.S., et al., Preparation and characterization of chitosan microsphere loading bovine serum albumin. Journal Of Wuhan University Of Technology-Materials Science Edition, 2012. 27(3): p. 459-464.
7. Zhao, X.B., P.C. Du, and P. Liu, Preparation of Aggregation-Resistant Biocompatible Superparamagnetic Noncovalent Hybrid Multilayer Hollow Microspheres for Controlled Drug Release. Molecular Pharmaceutics, 2012. 9(11): p. 3330-3339.
8. Cai, Y., et al., Porous microsphere and its applications. International Journal Of Nanomedicine, 2013. 8: p. 1111-1120.
9. Cheng, D.L., et al., Engineering poly(lactic-co-glycolic acid)/calcium carbonate microspheres with controllable topography and their cell response. Journal Of Materials Chemistry B, 2013. 1(26): p. 3322-3329.
10. Yang, H., et al., Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. Crystengcomm, 2013. 15(29): p. 5760-5763.
11. Efthimiadou, E.K., et al., Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: Synthesis, characterization and cytotoxicity study. International Journal Of Pharmaceutics, 2014. 461(1-2): p. 54-63.
12. Farooq, U., R. Malviya, and P.K. Sharma, Advancement in microsphere preparation using natural polymers and recent patents. Recent patents on drug delivery amp; formulation, 2014. 8(2): p. 111-25.
13. Lu, B.Q., et al., Core-Shell Hollow Microspheres of Magnetic Iron Oxide@Amorphous Calcium Phosphate: Synthesis Using Adenosine 5 '-Triphosphate and Application in pH-Responsive Drug Delivery. Chemistry-an Asian Journal, 2014. 9(10): p. 2908-2914.
14. Sato, K., M. Seno, and J.-I. Anzai, Release of Insulin from Calcium Carbonate Microspheres with and without Layer-by-Layer Thin Coatings. Polymers, 2014. 6(8): p. 2157-2165.
15. Xu, W., et al., A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery. International Journal of Pharmaceutics, 2014. 476(1-2): p. 116-123.
16. Floyd, J.A., A. Galperin, and B.D. Ratner, Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Advanced Drug Delivery Reviews, 2015. 91: p. 23-37.
17. Kojima, R., et al., Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model. International Journal Of Pharmaceutics, 2015. 492(1-2): p. 20-27.
18. Zhou, W., et al., Controlled release of clodronate from PLA/PCL complex microsphere. Materials Letters, 2015. 152: p. 293-297.
19. Li, L., et al., Controllable preparation and drug loading properties of core-shell microspheres Fe3O4@MOFs/GO. Materials Letters, 2016. 162: p. 207-210.
20. Malik, S.A., et al., Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies. Journal Of Colloid And Interface Science, 2016. 467: p. 220-229.
21. Xiao, W., et al., Facile synthesis of reduced graphene oxide/titania composite hollow microspheres based on sonication-assisted interfacial self-assembly of tiny graphene oxide sheets and the photocatalytic property. Journal Of Alloys And Compounds, 2016. 665: p. 21-30.
22. 魏珊珊, et al., 氧化石墨烯的制备与改性研究. 矿冶工程, 2012(03): p. 107-110.
23. 刘佳, 球形磷酸钙/碳酸钙复合药物载体的制备及其性能研究. 2014, 浙江理工大学.
24. 蔡政, 磷酸钙盐药物载体的初步研究. 化工时刊, 2007(07): p. 11-12.
25. 张群,方亮,陈传宝, 聚苯乙烯磺酸钠_L_谷氨酸协同作用下新型碳酸钙微球的简易合成. 化工新型材料, 2008. 36(4): p. 32-33,49.

3. 毕业设计(论文)进程安排

起讫日期

设计(论文)各阶段工作内容

备 注

12.28-1.15

文献查询及文献翻译

2.22-3.15

完成开题报告、前期实验探索

2.29-4.10

实验研究,表征测试、数据分析

4.11-4.17

论文中期检查

4.18-6.5

实验操作、数据分析、撰写论文

6.1-6.12

论文答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图