基于时间序列交易数据的异常信息检测开题报告
2020-04-23 19:54:28
1. 研究目的与意义(文献综述)
进入二十一世纪以来,随着社会经济的快速发展,互联网技术突飞猛进,在这种发展形势下,网上交易应运而生。网上交易与生俱来的快速、便捷、低成本等优势使其在人们的生活领域和经济领域中的地位日趋凸显。其中,证券行业在互联网技术的不断渗透下,网上证券交易迅猛发展,日益成为证券交易的主要形式。但是,随着互联网的普及,针对网上证券交易的安全事件也日益增多。盗买盗卖、短线操作、连续集中交易等非法交易行为给投资者和证券公司带来经济损失的同时,也影响了证券行业的长远发展。且网上证券交易具有无人监管和交易量大的特点,所以对交易过程进行实时监控,即对交易数据进行异常检测,对可能存在的异常行为及时预警具有十分重要的意义。
时间序列异常检测是近些年才兴起的研究领域,是目前异常检测领域的研究热点。由于时间序列具有明显的时间属性,序列值之间必须按照时间先后顺序进行严格的排序,因此无序点集的异常检测方法对其并不适用。经过近几年的发展,产生了很多方法。主要有以下几大类:
(1)机器学习的方法
2. 研究的基本内容与方案
(1)研究的基本内容:本文针对网上证券交易容易出现非法交易行为等安全性问题,利用某只股票的即日交易数据,通过特征提取等方法建立合适的异常检测模型,找出异常数据,进一步判断该股票是否存在异常。
(2)目标:对即日交易数据建立异常检测模型,及时判断网上证券交易过程中的一些非法交易行为,进而保证投资者的财产安全以及证券市场的健康发展。
(3)拟采用的技术方案及措施:
3. 研究计划与安排
第1-3周 阅读各类文献、着重阅读与翻译一篇主要参考的英文文献,与老师讨论,提出自己的想法,并将开题报告的初稿写好,递与老师审阅;并按照指导老师意见认真修改自己的不足之处,完成开题报告的终稿。
第4-5周 寻找合适的研究数据,并完成数据的预处理。
第6-8周 根据所采用的方法,进行数据分析、编程、记录。对于结果进行确认、修正。对于出现的问题请教老师。
4. 参考文献(12篇以上)
[1] bhuyan m h,bhattacharyya d k,kalita j k.network anomaly detection:methods,systems and tools[j]. communications surveysamp;tutorials,ieee . 2014.
[2]wei wang,baoju zhang,dan wang,yu jiang,shan qin,lei xue. anomaly detection based on probability density function with kullback–leibler divergence[j]. signal processing,2016,126.
[3] ]farid kadri,fouzi harrou,sondès chaabane,ying sun,christian tahon. seasonal arma-based spc charts for anomaly detection: application to emergency department systems[j]. neurocomputing,2016,173.
最新文档
- 石榴物候期观测与春夏栽培技术开题报告
- 基于关键性影响因素的农村“煤改气”工程分析——以北京地区为例文献综述
- 酰基化黑米花色苷稳定性与抗氧化活性研究开题报告
- 应变片方位偏差对测量结果影响分析文献综述
- 海南省土壤环境功能区划研究开题报告
- 过去百年山西省耕地网格化重建研究文献综述
- 石蒜植物EST资源的SSR信息分析及EST-SSR标记开发开题报告
- 1979-2017年华北地区极端高温事件季节内尺度特征初探文献综述
- 磁化水对火炬松种子休眠解除的影响开题报告
- 酸雨对含磷物质钝化修复的农田土壤磷流失影响研究文献综述
- 甜橙油纳米乳液的制备及稳定性研究开题报告
- 基于单片机的温湿度实时测量系统文献综述
- 不同品种薄壳山核桃花粉形态特性的比较研究开题报告
- WRF模式边界层参数化方案对漳河流域一次降水模拟的影响研究文献综述
- 利用反向原子转移自由基聚合合成聚丙烯酸甲酯开题报告


