登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 热能与动力工程 > 正文

用于除湿的顺排矩形翅片热管换热器的传热分析毕业论文

 2022-06-11 09:06  

论文总字数:25839字

摘 要

随着经济的发展,传统能源越来越匮乏。在空气调节中,除湿能耗已经占据了很大的一部分。空气中的水蒸气含量不大,但是水蒸气的汽化潜热比较大,凝结出来可以放出可观的能量,我们可以利用热管换热器来利用这部分能量,用其加热低温低湿的空气,达到节能的目的。

本文利用流体计算软件Icepak,通过改变翅片间距、翅片高度、管间距和翅片厚度,分析其对换热器的传热系数h和传热热阻R的影响。

数值模拟结果表明: 随着迎面风速的增加, Nu数增加,表面传热系数显著增加,传热热阻减小; 随着翅片间距的增加,Nu 数减小,传热系数减小,热阻增大;随着翅片高度的增加,换热系数明显增加,Nu数增大,传热热阻减小;随着管间距的增大,传热系数不断减小,传热热阻增大;随着翅片厚度的增加,Nu数增大,传热系数增大,传热热阻减小。本文数值模拟结果可为空冷器的设计与实验提供参考。

最后选取管间距为30mm,翅片高度8mm,翅片厚度0.8mm。间距为2mm设计出一台热管换热器。

关键词:矩形翅片管 传热系数 传热热阻 数值模拟

Analysis on heat transfer characteristics on lined arrangement of Rectangle finned tubes for dehumidification

ABSTRACT

With the economic development, traditional energy sources are increasingly scarce. In the air conditioning, energy consumption for dehumidification has accounted for a large part of it.Water vapor content in the air is little, but the latent heat of vaporization of water vapor is relatively large, considerable energy can be released when condensing out.We can use the heat pipe heat exchanger to utilize this energy,to heat low temperature and humidity of the air, it can save energy.

With changing one of the four variations, fin pitch,pipe interval and fin thickness and fin height,numerical simulation were performed with the help of the fluid calculation software, Icepak, to analyze the effects to the heat exchanger on the heat transfer coefficient and the heat transfer resistance.

Numerical simulation results showed that heat transfer coefficient increased with the increase of head wind air velocity,while the thermal resistance of R decreased,Nu number decreased. With the increasing of fin pitch, the Nu number and heat transfer coefficient both experience a decreasing process,while the thermal resistance of R increased.With the increasing of fin height, heat transfer coefficient ascend, Nu number increased,while the heat transfer resistance R go through a decreasing process.With the increasing of pipe interval,the heat transfer resistance decreases,while the thermal resistance of R decreased.Both the heat transfer coefficient and Nu number increased with the increase of fin thickness,while the heat transfer resistance R go through a decreasing process.The results will provide a reference to the design and experiment of the air cooler.

Finally, selected tube spacing 30mm, fin height 8mm, fin thickness 0.8mm. Fin pitch 2mm to design a heat pipe heat exchanger.

Key words:rectangle finned tube; heat transfer coefficient; Heat transfer resistance; numerical simulation

目录

摘要...........................................................................................................Ⅰ

ABSTRACT...................................................................................................Ⅱ

符号表.......................................................................................................Ⅵ

  1. 绪论.............................................................................................................1

1.1热管换热器的应用...........................................................................................1

1.2热管换热器用于除湿.......................................................................................2

1.3热管换热器的研究现状...................................................................................3

1.4总结...................................................................................................................6

1.5本课题的研究内容及研究方法.......................................................................6

  1. 翅片管模型的建立..................................................................................8

2.1Icepak软件介绍................................................................................................8

2.2物理模型...........................................................................................................9

2.3几何模型.........................................................................................................10

2.4边界条件.........................................................................................................12

2.5网格划分.........................................................................................................12

  1. 数据处理及分析...................................................................................16

3.1对流传热问题完整的数学描述.....................................................................16

3.2理论计算.........................................................................................................16

3.3模拟结果后处.................................................................................................18

3.4模拟结果和理论结果的对比.........................................................................20

3.5模拟结果云图分析.........................................................................................21

3.6模拟数据汇总及分析.....................................................................................24

  1. 矩形翅片热管换热器的设计.............................................................31

4.1换热器的已知条件........................................................................................31

4.2换热器的设计................................................................................................31

  1. 结论与展望..............................................................................................40

5.1模拟结论........................................................................................................40

5.2未来展望........................................................................................................40

参考文献...................................................................................................................41致谢.............................................................................................................................44

符号表

符号

含义

单位

物理量

——

每米长热管管外总表面积

m2

——

每米长热管的翅片表面积

m2

——

每米长翅片间管表面积

m2

——

迎风面积

m2

B

——

迎风管排数

——

定性温度下热侧空气定压比热容

kJ/(kg·K)

——

容积当量直径

m

——

热管外径

mm

——

热管内径

mm

——

迎风面宽度

m

——

流体最大质量流量

kg/(m2·h)

——

换热系数

W/(m2·K)

——

管外有效换热系数

W/(m2·K)

H

——

翅片型号

mm

——

翅片高度

mm

——

热管蒸发段长度

mm

——

热管冷凝段长度

mm

——

气流流向深度

mm

——

换热器纵深排数

——

所需热管数

——

每米热管长的翅片数

——

努塞尔数

——

管束最小流通截面积

m2

——

通过换热器的压降

Pa

——

定性温度下热侧普朗克数

——

热侧空气放出热量

kW

——

热管传至冷侧热量

kW

——

雷诺准则数

——

纵向管子中心距

mm

——

横线管子中心距

mm

——

翅片间距

mm

——

热侧空气定性温度

——

平均管壁温度

————

冷空气出口温度

——

平均温差

——

总传热系数

W/(m2·K)

——

标准迎风面速度

m/s

——

定性温度下热侧空气密度

kg/m3

——

定性温度下热侧空气导热系数

W/(m·K)

——

定性温度下热侧空气粘度

kg/(m·s)

——

翅片厚度

mm

——

翅片效率

上标

C

——

冷侧流体

h

——

热侧流体

下标

f

——

翅片

in

——

进口

out

——

出口

w

——

管壁

y

——

污垢

1

——

进口

2

——

出口

第一章 绪论

请支付后下载全文,论文总字数:25839字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图