登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 能源与动力工程 > 正文

基于ASPENPLUS平台的生物质气化模拟及实验研究毕业论文

 2022-01-23 08:01  

论文总字数:32694字

摘 要

氢能被视为21世纪最具有发展潜力的清洁能源,而生物质气化制氢是现阶段制氢的主要手段之一,利用生物质作为制氢工艺的主要原料。本文分别选取纤维素、花生秆、含油污泥为原料进行生物质气化实验,并在结合实验条件和生物质原料自身特性的基础上,使用ASPEN PLUS(Advanced System for Process Engineering过程工程的先进系统)软件针对生物质气化过程建立模型,通过生物质气化模型和生物质气化实验探究气化温度与气化原料对主要气体产物析出特性的影响。

首先对生物质能源、ASPEN PLUS软件功能以及生物质气化数值模拟的研究现状进行介绍。对生物质气化的基本原理以及技术特点进行说明,阐述气化过程涉及的化学反应与影响因素,为实验的设计、模型的建立以及结果的分析提供理论依据。

其次,对生物质气化实验的实验原料、实验设备、实验流程以及实验结果进行分析。根据不同原料以及不同气化温度的实验,研究表明生物质气化产气中,氢气为主要产物,一氧化碳产气量随着气化温度的变化和生物质原料的不同变化较大,甲烷的产量占比比较稳定且产量不大。其中,在以花生秆为原料,在800℃的条件下进行气化,氢气的产量最高,氢气产气流量可达17ml/min,占总产量的53.43%;其次为二氧化碳,产气量达8.15ml/min,占总产量的25.04%。以纤维素为原料,在气化温度为800℃时的一氧化碳和甲烷的产气量为四组实验中的最高值,一氧化碳产气流量达9.39ml/min,占总产量的44.55%;甲烷产气流量为1.86ml/min,占总产量的8.82%。

使用ASPEN PLUS模拟计算气化过程的理论基础是吉布斯自由能最小值原理,使用该软件进行模拟从生物质气化反应动力学进一步进行分析说明。结合实验条件与实验台设计模型流程图,根据建模思路与流程图完成了生物质气化模型的建立。并将模型的模拟结果与实验结果进行适应性验证,验证结果表明该模型对预测主要气体产物的生成趋势有着很好的准确度,但是对生成量与实验结果存在一定的偏差。根据生物质气化的原理与化学反应过程,分析偏差产生的原因和分析气化温度和气化原料对主要气体产生生成量的影响。结果表明:纤维素是生物质原料进行裂解气化时,生成氢气和甲烷效果较好的组分,且气化温度为800℃时的气化效果优于气化温度为900℃时的气化效果;含油污泥由于自身构成的复杂性,气化产气的效果不佳,产气量低于以纤维素和花生秆为原料时的产气量。

最后,针对现今生物质气化实际应用现状,使用ASPEN PLUS建立针对流化床气化炉的生物质气化模型作为工艺拓展,探究使用流化床气化炉时,空气当量比与气化温度对气化特性的影响。并基于该模拟结果,对生物质气化制取富氢合成气的工业应用示范工程进行设想。

关键词:ASPEN PLUS 生物质气化 数值模拟 气化温度

Biomass gasification simulation and experimental research based on ASPEN PLUS platform

Abstract

Hydrogen can be regarded as the most promising clean energy in the 21st century, hydrogen production from biomass gasification is one of the main means of yielding hydrogen production at this stage, using biomass as the main raw material for hydrogen production. In this paper, cellulose, peanut stalk and oily sludge were selected as raw materials for biomass gasification experiment, and based on the combination of experimental conditions and the characteristics of the biomass raw materials, modeling biomass gasification processes using ASPEN PLUS (Advanced System for Process Engineering), exploring the effects of gasification temperature and gasification feedstock on the precipitation characteristics of main gas products by biomass gasification model and biomass gasification experiment.

Firstly, the research status of biomass energy, ASPEN PLUS software function and numerical simulation of biomass gasification are introduced. Explain the basic principles and technical characteristics of biomass gasification, illustrate the chemical reactions and influencing factors involved in the gasification process, provide theoretical basis for experimental design, model establishment and analysis of results.

Secondly, the experimental materials, experimental equipment, experimental procedures and experimental results of the biomass gasification experiment are analyzed. Experiment based on different raw materials and different gasification temperatures, research shows that biomass gasification produces gas, hydrogen is the main product, the gas production of carbon monoxide varies greatly with the change of gasification temperature and the difference of biomass raw materials, methane production is relatively stable and the output is not large. Among them, gasification was carried out at 800 ° C using peanut stalk as raw material, hydrogen is the highest production, hydrogen gas production flow rate up to 17ml/min, 53.43% of total production; followed by carbon dioxide, gas production reached 8.15ml/min, accounting for 25.04% of the total output. Using cellulose as raw material, the gas production of carbon monoxide and methane at a gasification temperature of 800 ° C is the highest value of the four groups of experiments, carbon monoxide gas production flow rate of 9.39ml / min, 44.55% of total production; the methane gas production flow rate is 1.86 ml/min, accounting for 8.82% of the total production.

The theoretical basis for using the ASPEN PLUS simulation to calculate the gasification process is the Gibbs free energy minimum principle, use this software to simulate further analysis from biomass gasification reaction kinetics. Combined experimental conditions and experimental platform design model flow sheet, the establishment of biomass gasification model was completed according to the modeling ideas and flow chart. And the simulation results of the model and the experimental results are adaptively verified, The verification results show that the model has good accuracy for predicting the generation trend of main gas products, but there is a certain deviation between the amount of production and the experimental results. According to the principle of biomass gasification and chemical reaction process, analysis of the causes of deviations and analysis of the effects of gasification temperature and gasification feedstock on the production of major gases. The results show that cellulose is a component with good hydrogen and methane production when biomass is used for cracking and gasification, and the gasification effect when the gasification temperature is 800°C is better than the gasification effect when the gasification temperature is 900°C; due to the complexity of its own composition, the effect of gasification and gas production is not good, and the gas production is lower than that of cellulose and peanut stalks.

Finally, for the current practical application of biomass gasification, ASPEN PLUS is used to establish a biomass gasification model for fluidized bed gasifier as a process development, exploring the effect of air equivalence ratio and gasification temperature on gasification characteristics when using fluidized bed gasifier. Based on the simulation results, the industrial application demonstration project for biomass gasification to produce hydrogen-rich syngas is envisaged.

Key Words: ASPEN PLUS; Biomass gasification; Numerical simulation; Gasification temperature

目 录

摘 要 I

Abstract II

第1章:绪论 1

1.1 研究背景 1

1.2 ASPEN PLUS软件简介 1

1.3 国内外ASPEN PLUS模拟生物质气化研究现状 2

1.3.1 国外研究现状 2

1.3.2 国内研究现状 3

1.4 本文研究的主要内容 3

第二章:生物质气化基础 5

2.1 生物质气化的基本原理 5

2.2 生物质气化技术的特点 5

2.3 生物质气化过程的化学反应 6

2.4 生物质气化过程的影响因素 7

2.3.1 生物质原料的气化特性 7

2.3.2 气化过程的条件参数 8

2.4 本章小结 8

第三章:生物质气化实验及影响因素 9

3.1 实验基础 9

3.1.1 实验原料 9

3.1.2 实验原料分析 11

3.1.3 实验仪器 12

3.1.4 实验台简介 13

3.2 生物质气化实验 14

3.2.1 生物质原料的预处理 14

3.2.2 实验步骤 14

3.3 气体产物的测量 15

3.4 本章小结 17

第四章:基于ASPEN PLUS的生物质定向气化的模拟 18

4.1 引言 18

4.2 模拟方法与模拟思路 18

4.2.1 Gibbs自由能及最小自由能原理 18

4.2.2 生物质气化的模拟思路及流程图 19

4.3 生物质气化模型的建立 23

4.3.1 定义组分 23

4.3.2 选择物性方法 24

请支付后下载全文,论文总字数:32694字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图