登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 轮机工程 > 正文

8300DWT集装箱船动力装置设计毕业论文

 2021-11-07 09:11  

摘 要

随着全球化经济的高速发展,以石油、煤炭为主的化石燃料的大量使用,导致了温室效应、海平面上升等问题。航运业作为全球化经济的推动者,在营运过程中产生的能耗不容小觑。国际海事组织海洋环境保护委员会(MEPC)在第62次会议上,将新造船舶能效设计指数(EEDI)纳入《国际防止船舶污染公约》(MARPOL公约)附则Ⅵ,并于2013年1月1日正式生效,是船舶节能减排的重要里程碑,但是同时也对新船的建造提出了更高的挑战。集装箱船的建造设计包括船体、电气系统以及动力装置三大部分。动力装置占据了全船设计的大部分费用,并且与“节能减排”息息相关。考虑到超大型集装箱船的趋势或将减缓,本次设计就8300DWT集装箱船进行动力装置设计,在“节能减排”的背景下,讨论如何通过动力装置的设计达到降低能耗同时满足荷载要求的目的是具有现实指导意义的。

在本船动力装置设计中,本船动装设计先用爱尔法对船、机、桨进行机浆匹配计算,初步确定主机的型号和螺旋桨的基本参数。在寻找到相关主机型号建立样本集后,利用层次分析法模糊综合评价样本,以寻找主机型号的最优解。最后,考虑到MEPC第66次会议颁布的EEDI公式,对本船主推进装置进行能效分析,确定本船是否能满足要求。在确定船舶的主推进装置后,对为主机服务的各种辅助动力设施进行选型分析与计算,主要包括船舶燃油管路、滑油管路、冷却管路、压缩空气管路、消防系统、供水系统、机舱通风系统等。考虑到不同的海况、工况等各种因素下,为了实现船舶机舱的良好管理以及日常维护保养的方便性,对涉及动力装置设计的各种设备与管系要在船上进行合理的配置。用AutoCAD绘制船舶机舱布置图、船舶机舱管系原理图等共五张。

本次关于8300DWT集装箱船动力装置设计严格遵循“节能减排”的趋势,以降低EEDI等相关参数为主要目的寻找最优主机型号,进而选取相关辅助系统的设备型号,为相关工作人员提供了一些参考。

关键词:EEDI;主机选型;集装箱船;机舱布置

Abstract

With the rapid development of the global economy, the massive use of fossil fuels, mainly petroleum and coal, has led to problems such as the greenhouse effect and sea level rise. As a promoter of the global economy, the shipping industry generates a lot of energy consumption during its operation. The international maritime organisation to the Marine environment protection committee (MEPC) at the 62th meeting, will ship the new design of energy efficiency index (EEDI) included in the convention on the international prevention of pollution by supplement Ⅵ (MARPOL convention), and to take effect on January 1, 2013, is an important milestone of ship energy conservation and emissions reduction, but also for the construction of a new ship set a higher challenge. The design of container ship includes three parts: hull, electrical system and power plant. Power plants account for most of the cost of ship design and are closely related to "energy saving and emission reduction". Considering that the trend of ultra-large container ships may be slowing down, this design carries out power plant design for container ships meters on 8300DWT. In the context of "energy saving and emission reduction", it is of practical guiding significance to discuss how to achieve the goal of reducing energy consumption and meeting load requirements through power plant design.

In the design of the ship's power plant, the ship's dynamic installation design first USES the method of alfa to calculate the matching of the ship, the engine and the propeller, and preliminarily determines the model of the main engine and the basic parameters of the propeller. After finding the relevant host model and establishing the sample set, the analytic hierarchy process is used to evaluate the samples in order to find the optimal solution of the host model. Finally, taking into account the EEDI formula promulgated at the 66th meeting of MEPC, the energy efficiency of the ship owner's propulsion unit was analyzed to determine whether the ship could meet the requirements. After determining the main propulsion device of the ship, the model selection and calculation of various auxiliary power facilities serving the main engine are carried out, including the ship fuel pipeline, oil pipeline, cooling pipeline, compressed air pipeline, fire control system, water supply system, engine room ventilation system, etc. Considering various factors such as different sea conditions and working conditions, in order to realize the good management of the engine room and the convenience of daily maintenance, all kinds of equipment and piping systems involved in the design of power plant should be rationally configured on the ship. Using AutoCAD to draw the ship engine room layout plan, ship engine room pipe system schematic diagram and so on a total of five.

In this paper, the design of 8300DWT container ship power plant strictly follows the trend of "energy saving and emission reduction", with the main purpose of reducing the relevant parameters such as EEDI to find the optimal host model, and then select the equipment model of the relevant auxiliary system, so as to provide some references for the relevant staff.

Key words: EEDI; Main engine selection; Container ships; Engine room

目录

摘要 I

Abstract II

第1章 绪论 1

1.1研究背景及意义 1

1.2全球集装箱船造船市场形势 2

1.2.1全球集装箱船新造船市场行情出现下行 2

1.2.2集装箱船新船价格持续小幅下滑 2

1.2.3全球集装箱船船型订单两极化趋势延续 3

1.3 研究的基本内容、目标、拟采用的技术方案及措施 3

1.3.1研究的基本内容 3

1.3.2研究的目标 4

1.3.3研究拟采用的技术方案及措施 4

第2章 船舶能效设计指数 5

2.1船舶能效设计指数EEDI出现背景 5

2.2船舶能效设计指数 EEDI 应用现状 5

2.3船舶能效指数EEDI计算 5

2.3.1EEDI计算公式 5

2.3.2EEDI基线 9

2.4降低船舶能效设计指数 EEDI 的关键技术 11

2.4.1影响 EEDI 的主要因素 11

2.4.2降低 EEDI 的关键技术 11

第3章 主机与螺旋桨选型 12

3.1引言 12

3.2 用爱尔法估算船舶有效功率 13

3.2.1爱尔法中标准船型参数计算 13

3.2.2爱尔法中船舶实际参数的修正 14

3.3 机桨匹配 17

① 伴流分数ω 17

② 推力减额分数t 17

③ 相对旋转效率ηr 17

④ 轴系传递效率ηs 17

3.4模糊评价法选取主机选型 19

3.4.1模糊综合评价方法基本理论 19

3.4.2船舶主机选型综合评价 19

3.5减速齿轮箱的配备 22

3.6主机的EEDI分析 23

第4章 主要机械设备估算 24

4.1 船舶电站 24

4.2 船舶辅锅炉 25

4.3 燃油系统设备估算及选型 25

4.3.1燃油消耗量 25

4.3.2燃油舱柜容积计算 26

4.3.3燃油分油机和燃油泵 27

4.4滑油系统设备估算及选型 27

4.4.1滑油消耗量 27

4.4.2滑油舱柜容积计算 28

4.4.3滑油分油机和滑油泵 28

4.5冷却系统设备估算及选型 29

4.5.1淡水冷却系统 29

4.5.2海水冷却系统 30

4.6压缩空气系统设备估算及选型 30

4.7保船系统设备估算及选型 31

4.7.1压载水系统计算与选型 31

4.7.2消防系统计算与选型 31

4.7.3供水系统计算与选型 32

4.8通风系统设备估算及选型 33

第5章 主要机械设备明细表 34

5.1主机 34

5.2螺旋桨 34

5.3主发电柴油机 35

5.4应急发电柴油机 35

5.5燃油废气组合锅炉 36

5.6油泵 36

5.7水泵 37

5.8油处理设备 38

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图