登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 机械机电类 > 汽车服务工程 > 正文

轮毂电机驱动的水路两栖车动力匹配与控制技术研究毕业论文

 2021-04-05 11:04  

摘 要

轮毂电机驱动的水陆两栖车辆兼具水、陆双重作战性能,可以完成近海抢险登陆、物资运输等功能,完成陆地车辆难以胜任的战斗任务,具有非常重要的军事价值。水陆两栖车入水或出水登陆地点不定,在实际的军事战斗中,为了躲避地方的炮火攻击,需要两栖车在出水后的第一时间内利用其作为陆地车辆的机动性迅速驶离登陆点,但在水陆交界处路况往往比较恶劣,硬质路面可能存在附着系数的变化,或者存在各种松软泥泞路面。车辆行驶在这些恶劣路面极易引起车轮的滑转与沉陷,车辆的转矩被过多的浪费,水陆两栖车辆的动力性和行驶稳定性也会降低。

本文主要研究了水陆两栖车的动力系统参数匹配与选型,并以此为基础,开发了基于路面识别的水陆两栖车辆在硬质路面的驱动控制车并进行仿真验证。主要工作如下:

首先结合国内外水陆两栖车研究现状,构建了轮毂驱动的水陆两栖车辆整车动力系统布置以及动力传递路线。以某型水陆两栖车为原型,根据整车动力性能需求依次进行水陆两栖车轮毂电机、水上推进器系统、发动机、发电机和动力电池组的参数匹配与选型。

其次,根据土壤力学特性,选择Wong-Reece车轮模型得到轮胎力的表达式,建立了包含整车动力学模型、驾驶员模型、车轮旋转动力学模型、轮毂电机模型和传动系统模型的7自由度仿真模型,完成Carsim与MATLAB/Simulink联合仿真平台的搭建。

再次,建立以最佳滑转率为控制对象的两栖车辆驱动控制策略。设计路面识别算法,运用Burckhardμ-s曲线拟合参数得到硬质路面标准库,通过将实时滑转率与标准库对比插值得到车辆当前行驶路面的峰值附着系数与车轮最优滑转率。对比不同的驱动控制算法,建立基于PID算法的驱动控制策略。进一步建立了两栖车在松软路面的通过性指标,得到两栖车在松软泥泞路面的通过性主要与土壤特性参数有关,也与车辆的载荷、轮胎参数、车轮滑转率和驱动力矩有关的结论。最后通过Carsim与Simulink联合仿真,选取硬质低附着、对接、对开路面进行仿真验证。仿真结果表明,设计的路面识别算法可以快速识别出两栖车行驶的路面附着系数与最优滑转率,所设计的水陆两栖车驱动控制策略可以有效提高整车稳定性和动力性。

关键词:水陆两栖车;动力匹配;PID控制;通过性指标;联合仿真

Abstract

The amphibious vehicle driven by the hub motor has the dual combat performance of water and land. It has the functions of offshore emergency landing, material transportation, etc. It is of great military value to complete the incompetent combat mission of land vehicles. It has a very important military value. Amphibious vehicle landing points are uncertain. In order to avoid local artillery attacks in actual military battles, it is necessary for amphibious vehicle to use its mobility as a land vehicle to quickly leave the landing point in the first time after it leaves the water. However, the road conditions at the water and land junctions are often harsh, and there may be changes in the adhesion coefficient on the hard road surface or there are various soft muddy road surfaces. The amphibious vehicles driving on these bad roads are very likely to cause the wheels to slip and sink, the torque of the vehicle is excessively wasted, and the power and driving stability of the amphibious vehicles are also reduced.

This paper mainly studies the parameter matching and type selection of amphibious vehicle power system. Based on this, the driving control vehicle of amphibious vehicle on hard road based on road surface recognition is developed and verified by simulation. The main works are as follows:

Firstly, it combines the research status of amphibious vehicles at home and abroad. Constructed the hub-driven amphibious vehicle power system layout and power transmission route. Based on a certain type of amphibious vehicle, the parameters matching and selection of the amphibious wheel hub motor, the water propulsion system, the engine, the generator and the power battery pack are sequentially performed according to the dynamic performance requirements of the vehicle.

Secondly, according to the mechanical properties of the soil, select the Wong-Reece wheel model to get the expression of tire force. A 7-DOF simulation model including vehicle dynamics model, driver model, wheel rotation dynamics model, hub motor model and transmission system model are established. Then completing the build Carsim with MATLAB / Simulink co-simulation platform.

Thirdly, the driving control strategy of amphibious vehicles with optimal slip rate is established. Designing a road recognition algorithm, Using the Burckhard μ-s curve fitting parameters to obtain a hard pavement standard library, By comparing the real-time slip rate with the standard library, the peak adhesion coefficient of the vehicle's current road surface and the optimal slip rate of the vehicle are obtained. After comparing different drive control algorithms, we establish a driving control strategy based on PID algorithm. Furthermore, building the trafficable index of amphibious vehicles on soft pavement. Obtain the conclusion that the passability of amphibious vehicles on soft and muddy pavement is mainly related to soil characteristic parameters . as well as vehicle load, tire parameters, wheel slip rate and driving moment. Finally, through the Co-simulation of Carsim and Simulink, the hard and low adhesion, docking and docking pavement are selected for simulation verification. The simulation results show that the designed road recognition algorithm can quickly identify the road adhesion coefficient and the optimal slip rate of amphibious vehicles. The designed driving control strategy of amphibious vehicles can effectively improve the stability and dynamic performance of the vehicle.

Key Words:Amphibious vehicle; Power matching; PID control; Trafficable index; Co-simulation

目 录

摘 要 I

Abstract II

第1章 绪论 1

1.1 研究背景和研究意义 1

1.2 水陆两栖车国内外发展现状 1

1.2.1 水陆两栖车国外发展现状 1

1.2.2 国内水陆两栖车的发展现状 5

1.3 国内外道路识别技术研究现状 8

1.4 驱动防滑控制方法研究现状 10

1.5 论文研究的主要内容 10

第2章 轮毂驱动水陆两栖车辆动力参数匹配 12

2.1 轮毂电机驱动的水陆两栖车整车布置 12

2.2 轮毂电机的驱动水陆两栖车整车参数和动力性能指标 13

2.3 轮毂电机选型与参数匹配 14

2.3.1 轮毂电机的选型 14

2.3.2 整车驱动功率的确定 14

2.3.3 驱动电机转矩转速计算 16

2.3.4 减速比确定 16

2.4 水上推进器选择 17

2.5 水上驱动电机匹配 18

2.6 发动机-发电机选型与参数匹配 20

2.7 动力电池组参数匹配 21

2.8 本章小结 23

第3章 水陆两栖车整车模型的建立 24

3.1 车轮模型 24

3.2 土壤力学特性模型 25

3.2.1 土壤承压模型 25

3.2.2 土壤剪切模型 26

3.3 水陆两栖车车轮模型 26

3.3.1 Wong-Reece车轮模型 27

3.3.2 车轮旋转动力学模型 29

3.3.3 车轮侧向力模型 29

3.4 整车动力学模型 30

3.5 驾驶员模型 32

3.6 轮毂电机模型 32

3.7 仿真平台简介 33

3.8 联合仿真模型搭建 34

3.9 本章小结 36

第4章 基于路面识别的水陆两栖车驱动控制策略设计 37

4.1 路面识别算法设计 37

4.1.1 路面识别算法设计 38

4.1.2 驱动轮滑移率与利用附着系数计算 38

4.1.3 标准路面曲线μ-s模型的获取 38

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图