基于预测模型的红酒品质分析开题报告

 2020-02-20 10:02

1. 研究目的与意义(文献综述)

对于如何品鉴红酒,有经验的人会说,红酒最重要的是口感,但是口感的好坏受很多因素的影响,例如年份、产地、气候、酿造的工艺等等。但是,统计学家并没有时间去品尝各种各样的红酒,他们觉得通过一些化学属性特征就能很好的判断红酒的品质了。并且,现在很多酿酒企业其实也都这么干了,通过监测红酒中化学成分的含量,从而控制红酒的品质和口感。

另外,由于国内外葡萄种植面积基本趋于稳定,葡萄酒产量缓慢上升,消费量也呈持续增长态势,但由于红酒品质发展参差不齐,而且整个红酒品质却远远落后于整个市场的发展,缺乏科学客观的葡萄酒品质鉴定手段。但是随着时间的发展以及葡萄酒市场发展的越来越大,科学技术也发展的越来越好,这些条件已经为葡萄酒品质鉴定提供了新的可能,更加科学客观的手段应运而生。首先是在硬件设备方面,效液相色谱仪、紫外分光度设计、气相色谱仪、质谱仪乃至超高压液相串联四级杆质谱仪的出现,都为葡萄酒提供了完善的物化性质测定手段。而同时,随着信息技术的发展,大数据观念也将深入人心,数据挖掘方法开始趋向于完善,无论是聚类,分类,已广泛应用于社会各领域,尤其是分类手段,更是丰富,并且在分类评价中得到了广泛的认识。

因此,此次研究希望通过数据挖掘中的分类手段,通过对葡萄酒的理化指标分析,对葡萄酒进行品质分类,为品质测定提供一种科学客观的方法,为以后的质量支持提供指导,为完善整个葡萄酒市场品质评定提供补充,以此为国内葡萄酒市场的品质评定体系提供范例,促使国内评价体系的进步。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

本次研究采用数据挖掘模型的算法,采集红酒样本数据,并检测红酒中化学成分,对数据进行建模,进行预测和判断红酒的品质和等级。

采用能够运用于葡萄酒品质分类中的分类模型算法,包括了logistic多项模型、tan贝叶斯分类模型、带偏差项的bp神经网络模型以及决策树c5.0;针对不平衡数据的过抽样算法smote以及随机删除欠抽样算法;模型组合算法boosting以及代价敏感学习。

实证研究是此次研究的重中之重,对于葡萄酒品质鉴定的实证分析是基于uci数据库中的“wine quality data set”数据集,该数据集共有4898个样本数据,包含了11个表示该葡萄酒样本的物理及化学性质数据,以及一个代表该葡萄酒样本质量的标志数据。通过对这个数据集运用logistic多项模型、tan贝叶斯分类模型、带偏差项的bp神经网络模型以及决策树c5.0分类算法构建分类器对葡萄酒样本数据进行品质分类的实证研究,并比较各个分类器的优劣。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究计划与安排

(1) 第七学期末,确定设计题目。

(2) 第1—4周,根据所选的题目收集相关技术文献资料,完成开题报告,中英文翻译和文献检索工作。

(3) 第5周,安装所需软件,配置好系统,熟悉开发环境,做好前期准备工作。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

1、数据挖掘概念与技术(data mining concepts and techniques) jiawei han, micheline kamber 机械工业出版社

2、周红标 等,基于模糊递归小波神经网络的葡萄酒品质预测 ,《计算机测量与控制》 ,2017

3、孙文兵 等,遗传算法降维优化的bp模型及葡萄酒质量预测,《邵阳学院学报(自然科学版)》 2017

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。