登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 制药工程 > 正文

红曲菌的选育及其产红曲色素发酵工艺的优化任务书

 2020-06-26 07:06  

1. 毕业设计(论文)的内容和要求

(1)掌握文献查阅的一般方法,学会在中国期刊网、web of science科学引文索引、springer link电子期刊、elsevier sdos电子期刊等检索资源上查阅关于红曲菌选育及红曲色素发酵工艺等的相关文献,并对丝状真菌的液态培养操作有全面了解。

(2)文献阅读及综述:阅读与课题相关的中英文文献,了解国内外的研究动态,撰写文献综述。

(3)明确实验任务,拟定实验方案:根据所查阅文献的内容,确定研究内容及方案,拟定科学可行的研究计划。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Wang B, Zhang X, Wu Z, et al. Investigation of relationship between lipid and Monascus pigment accumulation by extractive fermentation[J]. Journal of biotechnology, 2015, 212: 167-173. [2] Chen G, Bei Q, Huang T, et al. Variations in Monascus pigment characteristics and biosynthetic gene expression using resting cell culture systems combined with extractive fermentation[J]. Applied microbiology and biotechnology, 2017: 1-10. [3] Chen G, Tang R, Tian X, et al. Change of Monascus pigment metabolism and secretion in different extractive fermentation process[J]. Bioprocess and Biosystems Engineering, 2017, 40(6): 857-866. [4] Chen G, Bei Q, Huang T, et al. Tracking of pigment accumulation and secretion in extractive fermentation of Monascus anka GIM 3.592[J]. Microbial cell factories, 2017, 16(1): 172. [5] Shi K, Song D, Chen G, et al. Controlling composition and color characteristics of Monascus pigments by pH and nitrogen sources in submerged fermentation[J]. Journal of bioscience and bioengineering, 2015, 120(2): 145-154. [6] Chen W, He Y, Zhou Y, et al. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics[J]. Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5): 555-567. [7] Lv J, Zhang B B, Liu X D, et al. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: The relationship between fermentation conditions and mycelial morphology[J]. Journal of Bioscience and Bioengineering, 2017. [8] Vendruscolo F, Schmidell W, Moritz D E, et al. Isoelectric point of amino acid: Importance for Monascus pigment production[J]. Biocatalysis and Agricultural Biotechnology, 2016, 5: 179-185. [9] Xiong X, Zhang X, Wu Z, et al. Accumulation of yellow Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution[J]. Applied microbiology and biotechnology, 2015, 99(3): 1173-1180. [10] Xiong X, Zhang X, Wu Z, et al. Coupled aminophilic reaction and directed metabolic channeling to red Monascus pigments by extractive fermentation in nonionic surfactant micelle aqueous solution[J]. Process Biochemistry, 2015, 50(2): 180-187. [11] Vendruscolo F, B#252;hler R M M, de Carvalho J C, et al. Monascus: a reality on the production and application of microbial pigments[J]. Applied biochemistry and biotechnology, 2016, 178(2): 211-223. [12] B#252;hler R M M, M#252;ller B L, Moritz D E, et al. Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation[J]. Applied biochemistry and biotechnology, 2015, 176(5): 1277-1289. [13] Chen G, Bei Q, Shi K, et al. Saturation effect and transmembrane conversion of Monascus pigment in nonionic surfactant aqueous solution[J]. AMB Express, 2017, 7(1): 24. [14] Chen G, Wang M, Tian X, et al. Analyses of Monascus pigment secretion and cellular morphology in non‐ionic surfactant micelle aqueous solution[J]. Microbial biotechnology, 2017. [15] Vendruscolo F, Schmidell W, de Oliveira D, et al. Kinetic of orange pigment production from Monascus ruber on submerged fermentation[J]. Bioprocess and biosystems engineering, 2017, 40(1): 115-121. [16] Yang J, Chen Q, Wang W, et al. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation[J]. Journal of bioscience and bioengineering, 2015, 119(5): 564-569. [17] Wang M, Huang T, Chen G, et al. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910[J]. Applied microbiology and biotechnology, 2017, 101(8): 3121-3130. [18] Chen G, Huang T, Bei Q, et al. Correlation of pigment production with mycelium morphology in extractive fermentation of Monascus anka GIM 3.592[J]. Process Biochemistry, 2017. [19] Feng Y, Shao Y, Zhou Y, et al. Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1[J]. European Food Research and Technology, 2015, 240(3): 635-643. [20] Huang T, Tan H, Lu F, et al. Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910[J]. Microbial cell factories, 2017, 16(1): 208. [21] Zhao L, Lu F, Zhang X, et al. Isolation of ionizable red Monascus pigments after extractive fermentation in nonionic surfactant micelle aqueous solution[J]. Process Biochemistry, 2017. [22] Xia M, Wang L, Yang Z, et al. High-throughput screening of high Monascus pigment-producing strain based on digital image processing[J]. Journal of industrial microbiology biotechnology, 2016, 43(4): 451-461. [23] Yang Y, Liu B, Du X, et al. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1[J]. Scientific reports, 2015, 5: 8331. [24] Lv J, Qian G F, Chen L, et al. Efficient biosynthesis of natural yellow pigments by Monascus purpureus in a novel integrated fermentation system[J]. Journal of Agricultural and Food Chemistry, 2018. [25] Srianta I, Zubaidah E, Estiasih T, et al. Comparison of Monascus purpureus growth, pigment production and composition on different cereal substrates with solid state fermentation[J]. Biocatalysis and Agricultural Biotechnology, 2016, 7: 181-186. [26] Srianta I, Ristiarini S, Nugerahani I, et al. Recent research and development of Monascus fermentation products[J]. International Food Research Journal, 2014, 21(1): 1-12. [27] Srianta I. Monascus-fermented sorghum: pigments and monacolin K produced by Monascus purpureus on whole grain, dehulled grain and bran substrates[J]. International Food Research Journal, 2015, 22(1): 377-382. [28] Huang T, Wang M, Shi K, et al. Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber[J]. AMB Express, 2017, 7(1): 79. [29] Liu Q, Xie N, He Y, et al. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7[J]. Applied microbiology and biotechnology, 2014, 98(1): 285-296. [30] Chen G, Shi K, Song D, et al. The pigment characteristics and productivity shifting in high cell density culture of Monascus anka mycelia[J]. BMC biotechnology, 2015, 15(1): 72. [31] Venil C K, Yusof N Z B, Ahmad W A. Solid State Fermentation Utilizing Agro-Industrial Waste for Microbial Pigment Production[M]//Sustainable Agriculture towards Food Security. Springer, Singapore, 2017: 375-381. [32] Hilares R T, de Souza R A, Marcelino P F, et al. Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber[J]. Food chemistry, 2018, 245: 786-791. [33] Feng Y, Shao Y, Zhou Y, et al. Monacolin K production by citrinin‐free Monascus pilosus MS‐1 and fermentation process monitoring[J]. Engineering in life sciences, 2014, 14(5): 538-545. [34] Prajapati V S, Soni N, Trivedi U B, et al. An enhancement of red pigment production by submerged culture of Monascus purpureus MTCC 410 employing statistical methodology[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(2): 140-145. [35] Klinsupa W, Phansiri S, Thongpradis P, et al. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade#8722;) and white mutant (prototroph)[J]. Journal of biotechnology, 2016, 217: 62-71. [36] Chen G, Wu Z. Production and biological activities of yellow pigments from Monascus[J]. World Journal of Microbiology and Biotechnology, 2016, 32(8): 1-8. [37] Huang T, Tan H, Chen G, et al. Rising temperature stimulates the biosynthesis of water-soluble fluorescent yellow pigments and gene expression in Monascus ruber CGMCC10910[J]. AMB Express, 2017, 7(1): 134. [38] Wang B, Zhang X, Wu Z, et al. Biosynthesis of Monascus[J]. Applied microbiology and biotechnology, 2016, 100(16): 7083-7089. [39] Said F M, Brooks J, Chisti Y. Optimal C: N ratio for the production of red pigments by Monascus ruber[J]. World Journal of Microbiology and Biotechnology, 2014, 30(9): 2471-2479. [40] Zhou Z, Yin Z, Hu X. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation[J]. Biotechnology and applied biochemistry, 2014, 61(6): 716-723. [41] Kang B, Zhang X, Wu Z, et al. Production of citrinin-free Monascus pigments by submerged culture at low pH[J]. Enzyme and microbial technology, 2014, 55: 50-57. [42] Panesar R, Kaur S, Panesar P S. Production of microbial pigments utilizing agro-industrial waste: a review[J]. Current Opinion in Food Science, 2015, 1: 70-76. [43] Akilandeswari P, Pradeep B V. Exploration of industrially important pigments from soil fungi[J]. Applied microbiology and biotechnology, 2016, 100(4): 1631-1643. [44] Lu F, Liu L, Huang Y, et al. Production of Monascus pigments as extracellular crystals by cell suspension culture[J]. Applied microbiology and biotechnology, 2018, 102(2): 677-687. [45] Ning Z Q, Cui H, Xu Y, et al. Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3. 4384[J]. International journal of food microbiology, 2017, 241: 325-330. [46] Balakrishnan B, Park S H, Kwon H J. Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus[J]. Applied Biological Chemistry, 2017, 60(4): 437-446. [47] Mu H, Huang L, Ding X, et al. Influence of Different Substrates on the Production of Pigments and Citrinin by Monascus FJ46[M]//Advances in Applied Biotechnology. Springer, Berlin, Heidelberg, 2015: 257-264. [48] Dufosse L, Fouillaud M, Caro Y, et al. Filamentous fungi are large-scale producers of pigments and colorants for the food industry[J]. Current opinion in biotechnology, 2014, 26: 56-61. [49] Liang B, Du X, Li P, et al. Orf6 gene encoded glyoxalase involved in mycotoxin citrinin biosynthesis in Monascus purpureus YY-1[J]. Applied microbiology and biotechnology, 2017, 101(19): 7281-7292. [50] Hu Y, Zhou Y, Mao Z, et al. NAD -dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin[J]. AMB Express, 2017, 7(1): 166. [51] Chen D, Xue Y, Chen M, et al. Optimization of submerged fermentation medium for citrinin-free monascin production by Monascus[J]. Preparative Biochemistry and Biotechnology, 2016, 46(8): 772-779.

3. 毕业设计(论文)进程安排

2018.1-2018.2 熟悉实验原理和实验操作,查阅文献,对课题进行初步探索。

2018.3-2018.4 对红曲菌孢子进行离子诱变,以筛选高产红曲色素突变株;高产突变株与出发菌株抗氧化酶cat、sod、pod)酶活变化的研究。

2018.4-2018.5 诱变前后菌株红曲色素合成的关键基因分子生物学水平的研究;对筛选所得菌株发酵培养基成分及发酵条件优化以进一步提高红曲色素产量。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图