登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 生物工程 > 正文

谷氨酸棒杆菌草酰乙酸节点和α-酮戊二酸节点的代谢途径改造对合成L-鸟氨酸的影响任务书

 2020-06-26 07:06  

1. 毕业设计(论文)的内容和要求

(1)掌握文献查阅的一般方法,学会在中国期刊网、web of science科学引文索引、springer link电子期刊、elsevier sdos电子期刊等检索资源上查阅关于谷氨酸棒杆菌合成l-鸟氨酸等的相关文献,并对谷氨酸棒杆菌基因操作有全面了解。

(2)文献阅读及综述:阅读与课题相关的中英文文献,了解国内外的研究动态,撰写文献综述。

(3)明确实验任务,拟定实验方案:根据所查阅文献的内容,确定研究内容及方案,拟定科学可行的研究计划。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Chen Z, Bommareddy R R, Frank D, et al. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum[J]. Applied and environmental microbiology, 2014, 80(4): 1388-1393. [2] Nagano‐Shoji M, Hamamoto Y, Mizuno Y, et al. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum[J]. Molecular Microbiology, 2017, 104(4): 677-689. [3] Yokota A, Sawada K, Wada M. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum[M]//Amino Acid Fermentation. Springer, Tokyo, 2016: 181-198. [4] Wada M, Sawada K, Ogura K, et al. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032[J]. Journal of bioscience and bioengineering, 2016, 121(2): 172-177. [5] Yanase M, Aikoh T, Sawada K, et al. Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite[J]. Journal of bioscience and bioengineering, 2016, 122(2): 160-167. [6] Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum[J]. Biotechnology letters, 2015, 37(7): 1473-1481. [7] Shi F, Fang H, Niu T, et al. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum[J]. Enzyme and microbial technology, 2016, 87: 79-85. [8] Shi F, Zhang M, Li Y. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum[J]. World Journal of Microbiology and Biotechnology, 2017, 33(6): 122. [9] Zhang X, Lai L, Xu G, et al. Effects of pyruvate kinase on the growth of Corynebacterium glutamicum and L-serine accumulation[J]. Process Biochemistry, 2017, 55: 32-40. [10] Sawada K, Wada M, Hagiwara T, et al. Effect of pyruvate kinase gene deletion on the physiology of Corynebacterium glutamicum ATCC13032 under biotin-sufficient non-glutamate-producing conditions: enhanced biomass production[J]. Metabolic Engineering Communications, 2015, 2: 67-75. [11] Li Y, Sun L, Feng J, et al. Efficient production of α-ketoglutarate in the gdh[J]. Bioprocess and biosystems engineering, 2016, 39(6): 967-976. [12] Komine-Abe A, Nagano-Shoji M, Kubo S, et al. Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum[J]. Bioscience, biotechnology, and biochemistry, 2017, 81(11): 2130-2138. [13] Raasch K, Bocola M, Labahn J, et al. Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: Mutants and a model[J]. Journal of biotechnology, 2014, 191: 99-105. [14] Nguyen A Q D, Schneider J, Reddy G K, et al. Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum[J]. Metabolites, 2015, 5(2): 211-231. [15] Okai N, Takahashi C, Hatada K, et al. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase[J]. AMB Express, 2014, 4(1): 20. [16] Mizuno Y, Nagano‐Shoji M, Kubo S, et al. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction[J]. MicrobiologyOpen, 2016, 5(1): 152-173. [17] Henke N A, Wiebe D, P#233;rez-Garc#237;a F, et al. Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum[J]. Bioresource Technology, 2018, 247: 744-752. [18] Heider S A E, Wendisch V F. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non‐natural products[J]. Biotechnology journal, 2015, 10(8): 1170-1184. [19] Becker J, Gie#223;elmann G, Hoffmann S L, et al. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering[J]. 2016. [20] Li Z, Liu J Z. Transcriptomic changes in response to putrescine production in metabolically engineered Corynebacterium glutamicum[J]. Frontiers in microbiology, 2017, 8. [21] Rehm N, B#252;rger J, Burkovsi A. Manipulation of nitrogen metabolism and alternative nitrogen sources for Corynebacterium glutamicum[J]. Corynebacterium glutamicum, 2015: 71-82. [22] Yim S S, Choi J W, Lee S H, et al. Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass[J]. ACS synthetic biology, 2016, 5(4): 334-343. [23] Chen M, Chen X, Wan F, et al. Effect of Tween 40 and DtsR1 on L-arginine overproduction in Corynebacterium crenatum[J]. Microbial cell factories, 2015, 14(1): 119. [24] Mei J, Xu N, Ye C, et al. Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114[J]. Gene, 2016, 575(2): 615-622. [25] Eikmanns B J, Blombach B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering[J]. Journal of biotechnology, 2014, 192: 339-345. [26] Wendisch V F. Microbial production of amino acid-related compounds[M]//Amino Acid Fermentation. Springer, Tokyo, 2016: 255-269. [27] Eberhardt D, Jensen J V K, Wendisch V F. L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources[J]. AMB Express, 2014, 4(1): 85. [28] Hirasawa T, Shimizu H. Glutamic Acid Fermentation: Discovery of Glutamic Acid-Producing Microorganisms, Analysis of the Production Mechanism, Metabolic Engineering, and Industrial Production Process[J]. Industrial Biotechnology: Products and Processes, 2016: 339-360. [29] Jorge J M P, Nguyen A Q D, P#233;rez‐Garc#237;a F, et al. Improved fermentative production of gamma‐aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose[J]. Biotechnology and bioengineering, 2017, 114(4): 862-873. [30] Tsuge Y, Kondo A. Production of Amino Acids (L-Glutamic Acid and L-Lysine) from Biomass[M]//Production of Platform Chemicals from Sustainable Resources. Springer Singapore, 2017: 437-455. [31] Yasueda H. Overproduction of l-Glutamate in Corynebacterium glutamicum[M]//Microbial Production. Springer Japan, 2014: 165-176. [32] Hara K Y, Araki M, Okai N, et al. Development of bio-based fine chemical production through synthetic bioengineering[J]. Microbial cell factories, 2014, 13(1): 173.

3. 毕业设计(论文)进程安排

2018.1-2018.2 熟悉实验原理和实验操作,查阅文献,对课题进行初步探索。

2018.3-2018.4 过表达草酰乙酸合成关键酶磷酸烯醇式丙酮酸羧化酶pepc,过表达α-酮戊二酸脱氢酶复合体odhc抑制蛋白odhi。

2018.4-2018.5 对重组菌进行摇瓶发酵,考察氨基酸产物和相关酶活的变化。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图