登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 化学化工与生命科学类 > 化学工程与工艺 > 正文

反选择性氧化石墨烯膜的制备表征及醇水分离性能任务书

 2020-06-10 10:06  

1. 毕业设计(论文)的内容和要求

反选择性膜(大尺寸分子优先渗透,小尺寸分子被截留)由于在节能降耗等方面的显著优势近年来已成为膜领域的研究热点。

针对目前高分子膜材料用于反选择性分离所存在的问题,基于石墨烯的规整纳米通道有望实现高效的反选择性分离。

本次毕业论文的主要内容是拟基于石墨烯纳米通道及高分子-无机双层结构构筑高性能反选择性膜,测试其渗透汽化性能并进行相关结构表征 1、理解渗透汽化的基本概念、原理、实验流程图以及影响处理性能的主要因素; 2、了解渗透汽化膜的基本分类及其所应用的分离体系; 3、了解氧化石墨烯膜的制备和物化性质; 4、合理安排实验进程,工作时间不迟到早退; 5、实验认真仔细,对实验现象进行详细的记录,定期对实验数据进行总结,及时调整实验方案; 6、 工作积极主动,勤于思考,做好实验室安全卫生工作。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] D. L. Gin; R. D. Noble, Designing the next generation of chemical separation membranes, Science, 2011, 332, 674-676. [2] M. D. Guiver; Y. M. Lee, Polymer rigidity improves microporous membranes, Science, 2013, 339, 284-285. [3] Y. Peng; Y. S. Li; Y. J. Ban; H. Jin; W. M. Jiao; X. L. Liu; W. S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 2014, 346, 1356-1359. [4] T. C. Merkel; B. D. Freeman; R. J. Spontak; Z. He; I. Pinnau; P. Meakin; A. J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 2002, 296, 519-522. [5] E. Jeon; S. Y. Moon; J. S. Bae; J. W. Park, In situ generation of reticulate micropores through covalent network/polymer nanocomposite membranes for reverse-selective separation of carbon dioxide, Angewandte Chemie International Edition, 2016, 55, 1318-1323. [6] H. Rabiee; A. Ghadimi; T. Mohammadi, Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF 4 ] gel membranes for CO2 /light gases separation, Journal of Membrane Science, 2015, 476, 286-302. [7] X. L. Liu; Y. S. Li; G. Q. Zhu; Y. J. Ban; L. Y. Xu; W. S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bioalcohols, Angewandte Chemie International Edition, 2011, 50, 10636-10639. [8] H. W. Fan; Q. Shi; H. Yan; S. L. Ji; J. X. Dong; G. J. Zhang, Simultaneously spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation, Angewandte Chemie International Edition, 2014, 53, 1-6. [9] G. P. Liu; W. S. Hung; J. Shen; Q. Q. Li; Y. H. Huang; W. Q. Jin; K. R. Lee; J. Y. Lai, Mixed matrix membranes with molecular-interaction-driven tunable free volumes for efficient bio-fuel recovery, Journal of Materials Chemistry A, 2015, 3, 4510-4521. [10] F. Clippel; A. L. Khan; A. C. Odena; M. Dusselier; K. Vanherck; L. Peng; S. Oswald; L. Giebeler; S. Corthals; B. Kenens; J. F. M. Denayer; P. A. Jacobs; I. F. J. Vankelecom; B. F. Sels, CO2 reverse selective mixed matrix membranes for H2 purification by incorporation of carbon-silica fillers, Journal of Materials Chemistry A, 2013, 1, 945-953. [11] X. J. Zhuang; X. R. Chen; Y. Su; J. Q. Luo; W. F Cao; Y. H. Wan, Improved performance of PDMS/silicalite-1 pervaporation membranes via designing new silicalite-1 particles, Journal of Membrane Science, 2015, 493, 37-45. [12] M. Q. Fang; H. T. Zhang; J. X. Chen; T. Wang; J. Liu; X. Li; J. D. Li; X. Z. Cao, A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation, Journal of Membrane Science, 2016, 499, 290-300. [13] J. Li; S. L. Ji, G. J. Zhang; H. X. Guo, Surface-modification of poly(dimethylsiloxane) membrane with self-assembled monolayers for alcohol permselective pervaporation, Langmuir, 2013, 29, 8093-8102. [14] R. R. Nair; H. A. Wu; P. N. Jayaram; I. V. Grigorieva; A. K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science, 2012, 335, 442-444. [15] R. K. Joshi; P. Carbone; F. C. Wang; V. G. Kravets; Y. Su; I. V. Grigorieva; H. A. Wu; A. K. Geim; R. R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 2014, 343, 752-754. [16] H. Li; Z. N. Song; X. J. Zhang; Y. Huang; S. G. Li; Y. T. Mao; H. J. Ploehn; Y. Bao; M. Yu, Ultrathin, molecular-sieving grapheme oxide membranes for selective hydrogen separation, Science, 2013, 342, 95-98. [17] B. X. Mi, Graphene oxide membranes for ionic and molecular sieving, Science, 2014, 343, 740-742. [18] G. W. He; X. Y. He; X. L. Wang; C. Y. Chang; J. Zhao; Z. Li; H. Wu; Z. Y. Jiang, Highly proton-conducting, methanol-blocking Nafion/grapheme oxide composite membrane enabled by surface-coating crosslinked sulfonated grapheme oxide, Chemical Communications, 2016, 52, 2173-2176.

3. 毕业设计(论文)进程安排

17.2.20~17.3.20 文献调研,开题报告 17.3.20~17.5.21 开展实验工作 17.5.21~17.5.28 中后期实验阶段及数据收集 17.5.28~17.6.10 数据整理,撰写论文

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图