登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 电子信息类 > 光电信息科学与工程 > 正文

磁场热处理对Fe3O4薄膜磁电阻增强效应的研究毕业论文

 2022-03-02 09:03  

论文总字数:16984字

摘 要

在半导体或者金属身上有这样一种现象:当对通电的半导体或者金属材料施加磁场作用时,它们的电阻会发生不同程度地改变。这就是磁电阻。作为一种衡量材料性能优劣的参量,人们对此并不陌生。不可否认,磁电阻的发现大大提高了人们的科技水平。人们一边享受着磁电阻应用器件带来的收益,一边又再更加深入地研究它以期得到更重大的发现。而巨磁电阻的发现与应用,更是将这股热潮推向了顶峰;半金属材料具有独特的能带结构,接近百分之百的自旋极化率显示出其巨大的研究价值。特别的,作为亚铁磁性半金属Fe3O4,有着很高的居里温度(860K),有着更为广泛的应用。本文采用PLD的方法制备Fe3O4薄膜,并在磁场环境下进行了热处理,实验发现其磁电阻得到了增强。我们用微磁学的方法推导出磁电阻方程并进行了数据拟合,很好地说明了实验现象。

关键词:磁场热处理 半金属磁性材料 微磁学 磁电阻效应

Study on Magnetoresistance Enhancement Effect of Fe3O4 by Magnetic Field Heat Treatment

Abstract

In the semiconductor or metal body there is a phenomenon: when the power of the semiconductor or metal materials applied magnetic field, their resistance will change to varying degrees. This is the magnetoresistance. As a measure of the merits of material performance parameters, people are no stranger to this. It is undeniable that the discovery of magnetoresistance greatly enhances people's technological level. People enjoy the benefits of magnetoresistance applications, while more in-depth study of it in order to get more significant discovery. And the discovery and application of giant magnetoresistance, it is this boom to the top; semi-metallic materials with a unique band structure, close to one hundred percent of the spin polarization shows its great research value. In particular, as a ferromagnetism semi-metallic Fe3O4, has a very high Curie temperature (860K), has a more extensive application. In this paper, Fe3O4 thin films were prepared by PLD method and heat treated in magnetic field. The magnetoresistance was improved. We deduced the magnetoresistance equation by micro-magnetism and fitted the data to fit the experimental phenomena well.

Key words: Magnetic field heat treatment;Semi - metallic magnetic materials;Micromagnetics;Magnetoresistance Effect

目录

摘要 I

Abstract II

第一章 绪论 IV

1.1磁电阻效应 1

1.1.1 磁电阻定义 1

1.1.2 不同材料的磁电阻方程 1

1.2 磁电阻分类 4

1.2.1正常磁电阻(OMR) 4

1.2.2各向异性磁电阻(AMR) 4

1.2.3 巨磁电阻(GMR) 5

1.2.4 隧穿磁电阻 (TMR) 5

1.2.5 庞磁电阻(CMR) 6

1.3 磁电阻的应用 6

1.4 半金属磁性材料 6

1.5 磁场热处理 7

1.6 论文选题依据 7

第二章 理论方法与实验方法 9

2.1 理论方法-微磁学 9

2.1.1 微磁学简介 9

2.1.2 利用变分法求能量最低态 10

2.2 实验方法 11

2.2.1PLD法制备Fe3O4薄膜 11

2.2.2 四探针法测磁电阻 12

第三章 磁场作用下Fe3O4的自旋结构及其磁电阻方程 13

3.1 引言 13

3.1.1 Fe3O4的晶体结构 13

3.1.2 Fe3O4的自旋结构 14

3.1.3 Fe3O4的电子结构和电输运性质 14

3.1.4 Fe3O4的磁电阻 14

3.2 理论模型及计算结果 16

3.3磁场热处理对Fe3O4薄膜磁电阻增强效应的研究 18

3.3.1引言 18

3.3.2结果与讨论 19

3.3.3结论 21

第四章 未来展望 23

致谢 24

参考文献: 25

第一章 绪论

1.1 磁电阻效应

1.1.1 磁电阻定义

在半导体或者金属身上有这样一种现象:当对通电的半导体或者金属材料施加磁场作用时,它们的电阻会发生不同程度地改变。这就是磁电阻[1]。磁电阻具有普遍性,几乎存在于各种材料中。它们或大或小,小的只有不到3%,大的能达到50%,甚至能超过100%。磁电阻的大小用公式可定义为[2]

(1-1)

由上式得,加入磁场后,若电阻增大,则MR为正值。若电阻减小,则MR为负值。磁电阻大小依赖于外磁场的强弱,因此磁电阻方程可以用来表达。

1.1.2 不同材料的磁电阻方程

(1) 普通金属材料

请支付后下载全文,论文总字数:16984字

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图