登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 电子信息类 > 光电信息科学与工程 > 正文

金属氧化物金属金属氧化物多层膜结构的光学及电学特性研究毕业论文

 2021-04-23 11:04  

摘 要

目前商用的透明电极多采用锡掺杂氧化铟(ITO),然而,其生产原材料中的稀有元素铟存在价格日益上涨的问题,又有透明导电氧化物(TCO)薄膜固有脆性、柔性较差等缺点。基于氧化物/金属/氧化物(Oxide-Metal-Oxide,OMO)多层膜结构具有良好的导电性和透光性,且在成本和机械柔性上均优于商用的ITO薄膜,而受到人们的广泛的关注。

本文首先介绍了基于OMO结构的透明导电薄膜的基本结构及优缺点,并综述了其研究现状。其次,通过FDTD仿真方法构建了OMO结构模型,简单分析了OMO结构的透光率与材料及各层薄膜厚度之间的关系。最后,我们通过磁控溅射技术在透明玻璃片上制备ZnO/Ag/ZnO多层薄膜,分析了每一层的作用,得到了最优的透光率的薄膜。实验结果表明:靠近玻璃片的ZnO膜对银薄膜的沉积具有缓冲作用,有利于获得连续平整的金属薄膜,从而保证OMO的导电特性;中间银薄膜的厚度决定了OMO多层膜的光吸收损耗,银膜越薄则多层膜的透光率越高;利用远离玻璃片ZnO膜在其两个界面处反射光的干涉,合理选择该层薄膜的厚度,可以提高多层膜结构的透光率。通过优化ZnO/Ag/ZnO三层膜,其透明电极的最优平均透射率为73.12%,方阻为14.11Ω/sq,最优的品质因子为0.0518。

本文的特色:利用FDTD solutions研究了OMO多层膜结构中每层膜的作用,为提高OMO三层膜结构的透光性能提供了理论依据。并通过磁控溅射技术,在透明玻璃片上制得了薄膜,验证了每层膜的作用,优化了各层厚度,得到了透光性能优良的透明导电薄膜。

关键词:透明导电薄膜;OMO多层膜;FDTD仿真;磁控溅射镀膜

Abstract

Indium tin oxide (ITO) is the most commonly used in current commercial products. However, the shortage of raw material indium and being inherently brittle transparent conductive oxide (TCO) film will increase the price of electrode and limit their application in flexible device. The structure of Oxide-Metal-Oxide (OMO) multi-layer film has good electrical conductivity and light transmission, which can solve the problems met by the current commercial transparent electrode, and have attracted people's wide attentions.

In this thesis, we firstly describe the transparent conductive film based on OMO structure, summarize its advantages and disadvantages, and reviews the current research status. Secondly, the OMO structure model was constructed by FDTD simulation, and the relationship between the light transmittance of OMO structure and the type and thickness of materials was analyzed. Finally, ZnO/Ag/ZnO multilayer transparent conductive films were prepared on the transparent glass by magnetron sputtering technique. The effect of each layer was analyzed and the optimal light transmittance of the films was obtained. The results of the study are listed as follows:

The ZnO film near the glass substrate act as the buffering layer for the formation of smooth and continue metal film and ensure the conductivity of multilayer film. The silver film in the middle will decide the optical loss of the OMO structure. Less thickness of the silver film, higher optical transparency of the film can be achieved. The ZnO film away from the glass substrate has the effect of increasing the light transmittance, contributed by the interference between the light reflected from the two interfaces of the ZnO layer. The optimum average transmittance of 73.12%, the square resistance of 14.11Ω/sq, and the quality factor of 0.0518 have been achieved for the three-layer ZnO/Ag/ZnO film on a transparent glass sheet.

The characteristics of this paper: Using FDTD solutions to optimize each layer of OMO multilayer film structure can provide a theoretical basis for improving the light transmission properties of OMO three-layer film structure. By magnetron sputtering technology, the film was fabricated on the transparent glass substrate, and the function of each film has been verified. After the thickness optimization for each layer, a transparent conductive film with excellent light transmission performance was obtained.

Key Words:transparent conductive film; OMO multilayer film; FDTD simulation; magnetron sputtering coating

目 录

第1章 绪论 1

1.1 引言 1

1.2 透明导电薄膜 1

1.3 氧化物-金属-氧化物(Oxide-Metal-Oxide,OMO)多层膜结构 2

1.3.1 OMO多层膜结构介绍 2

1.3.2 OMO多层膜结构的优点 2

1.3.3 OMO多层膜结构的缺点 3

1.3.4 OMO多层膜结构的研究现状 4

1.4 研究内容及意义 5

第2章 FDTD solutions仿真方法 6

2.1 软件介绍 6

2.2 时域有限差分法 6

2.3 设计流程 7

2.4 仿真结果 11

第3章 薄膜的制备及表征 17

3.1 薄膜的制备方法 17

3.1.1 磁控溅射技术介绍 17

3.1.2 磁控溅射设备介绍 18

3.1.3 磁控溅射制备流程 19

3.2 薄膜的表征方法 20

3.2.1 薄膜厚度 20

3.2.2 光学性能 20

3.2.3 电学性质 20

3.2.4 光电性能 21

第4章 ZnO/Ag/ZnO三层膜的制备 22

4.1 Ag膜制备 22

4.2 ZnO膜制备 23

4.3 ZnO/Ag/ZnO三层膜的制备流程 23

第5章 ZnO/Ag/ZnO三层膜光学特性及电学特性的研究 25

5.1 ZnO/Ag/ZnO三层膜电学特性 25

5.2 ZnO/Ag/ZnO三层膜光学特性 26

5.3 ZnO/Ag/ZnO三层膜光电性能 29

第6章 结论与展望 30

参考文献 31

致谢 32

第1章 绪论

1.1 引言

近些年来包括薄膜太阳能电池,发光二极管,平板显示器,触摸屏和电致变色等在内的光电子器件飞速发展,透明导电电极[1]作为其中的重要组成部分,对它提出了很多要求,比如高的光电性能、柔性且稳定。而且,当大规模生产透明导电电极时,要使成本尽量低廉,制备技术简单可行。目前商用的透明电极多采用ITO,然而,其生产原材料中的稀有元素铟价格日益上涨,又具有TCO薄膜固有脆性、柔性较差等缺点。因此,开发新型的ITO替代产品是必然趋势。一个高效的、柔性透明导电电极必须表现出高电导率和高光学透射率,同时具有优异的机械灵活性和长期稳定性。OMO多层膜结构不仅能够完美地满足以上要求,而且具有可利用连续的卷对卷技术[2]室温下在廉价塑料衬底上沉积的独特优势,满足透明导电电极要求,成为一种有前途的透明导电电极替代者,因而引起科研及工业界的广泛关注。

1.2 透明导电薄膜

透明导电薄膜要求同时具备优良的透光率和电导率两种性能,因此,它是一种具有特殊性质的薄膜。但是一般的薄膜如果透光率优良的话,电导率就会很差;电导率优良的话,透光率又会很差。透光率和电导率是矛盾的。透明导电薄膜通常具有较宽的带隙[3],在350-850nm波长范围内的透光率很高,平均透射率大于80%,而且其导电性能很好。

透明导电薄膜主要分为四类:透明导电金属薄膜、透明导电氧化物薄膜、非氧化物透明导电化合物薄膜和导电性颗粒分散介质体等,其中前两种透明导电薄膜研究最多、应用最光[4]

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图