登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 无机非金属材料工程 > 正文

氨基改性柔性氧化硅气凝胶的制备任务书

 2020-04-17 08:04  

1. 毕业设计(论文)的内容和要求

作为一种纳米多孔材料,气凝胶具有连续3维纳米多孔网络结构,赋予其低密度、高比表面积、大孔隙率等特性,其独特的网络结构可以有效限制热量传输,是一种理想的高性能隔热保温材料,其室温热导率可低至0.018w/(m#8729;k)以下,大大优于传统隔热材料,可用于蒸汽管道保温、窑炉保温、建筑节能、高速飞行器和特种服装等。

气凝胶种类众多,目前研究最多最成熟的是sio2气凝胶,但传统的sio2气凝胶强度低、脆性大、疏水性能差,极大地限制了其应用。

针对传统气凝胶材料力学性能差的问题,本论文旨在制备出氨基改性柔性氧化硅气凝胶。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels.[J]. Advanced Materials, 2013, 25(18):2554-2560. [2] Rudaz C, Courson R, Bonnet L, et al. Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel.[J]. Biomacromolecules, 2014, 15(6):2188-95. [3] 孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016, 35(8):001-5. [4] Yang J , Wang Q , Wang T , et al. Rapid preparation process, structure and thermal stability of lanthanum doped alumina aerogels with a high specific surface area[J]. Rsc Advances, 2016, 6(31):26271-26279. [5] Teng Y N, Joshi S C, Yeo J, et al. Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures[M]// Advances in Nanocomposites. 2016. [6] Nguyen S T, Feng J, Shao K N, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels[J]. Colloids Surfaces A Physicochemical Engineering Aspects, 2014, 445(6):128-134. [7] Malakooti S, Churu H G, Lee A, et al. Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels[J]. Journal of Non-Crystalline Solids, 2017, 476. [8] Kim S J, Chase G, Jana S C. The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths[J]. Separation Purification Technology, 2016, 166:48-54. [9] Ying C, Shao G, Yong K, et al. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO 2 capture[J]. Chemical Engineering Journal, 2017, 322:1-9. [10] Valo H, Arola S, Laaksonen P, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.[J]. European Journal of Pharmaceutical Sciences Official Journal of the European Federation for Pharmaceutical Sciences, 2013, 50(1):69-77. [11] Jiang C, Yao S, Lu Z, et al. Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS2/Graphene‐CNT Aerogels for High‐Energy Na Hybrid Capacitors[J]. Advanced Energy Materials, 2017, 8(10):1702488. [12] Zhang L, Wu J. Applications of aerogels in space exploration[J]. Cryogenics Superconductivity, 2015. [13] Meador M A B , Mcmillon E , Sandberg A , et al. Dielectric and Other Properties of Polyimide Aerogels Containing Fluorinated Blocks[J]. ACS Applied Materials Interfaces, 2014, 6(9):6062-6068. [14] Flexible, amine-modified silica aerogel with enhanced carbon dioxide capture performance[J]. Journal of Porous Materials, 2016, 23(1):131-137. [15] Chen D, Gao H, Jin Z, et al. Vacuum-Dried Synthesis of Low-Density Hydrophobic Monolithic Bridged Silsesquioxane Aerogels for Oil/Water Separation: Effects of Acid Catalyst and Its Excellent Flexibility[J]. ACS Applied Nano Materials, 2018, 1(2):933-939. [16] Mahadik D B, Jung H N R, Han W, et al. Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process[J]. Composites Science Technology, 2017, 147. [17] Miralem S , H#252;sing Nicola, Johannes B , et al. Carbon aerogels with improved flexibility by sphere templating[J]. RSC Advances, 2018, 8(48):27326-27331. [18] Guo F, Jiang Y, Xu Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9(1):881. [19] Hayase G , Kanamori K , Hasegawa G , et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility[J]. Angewandte Chemie International Edition, 2013, 52(41):10788-10791. [20] Versatile Double-Cross-Linking Approach to Transparent, Machinable, Supercompressible, Highly Bendable Aerogel Thermal Superinsulators[J]. Chemistry of Materials, 2018, 30(8):2759-2770. [21] Guoqing Z , Kazuyoshi K , Ayaka M , et al. Superflexible Multifunctional Polyvinylpolydimethylsiloxane-Based Aerogels as Efficient Absorbents, Thermal Superinsulators, and Strain Sensors[J]. Angewandte Chemie, 2018. [22] Marina S , Barbara M , Lorenz R . Novel superflexible resorcinol#8211;formaldehyde aerogels and combining of them with aramid honeycombs[J]. MRS Communications, 2014, 4(4):5. [23] Si Y , Yu J , Tang X , et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014, 5:5802. [24] Si Y , Wang X , Dou L , et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4(4):eaas8925.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.20~2019.1.12 查阅中外文资料,翻译外文资料 参加讨论 2019.2.26~2019.3.12 撰写开题报告 参加开题答辩 2019.3.13~2019.3.16 制定研究方案,熟悉仪器 参加讨论 2019.3.17~2019.4.28 前期的实验研究,结果分析 参加讨论 2019.4.29~2019.5.5 撰写中期报告 参加中期检查答辩 2019.5.6~2019.5.19 后期的实验研究,结果分析,补充计算 参加讨论 2019.5.20~2019.6.10 整理数据,撰写论文,准备答辩 参加毕业论文答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图