基于不同烷氧链取代的三联噻吩聚合物给体材料的制备和光电性质开题报告

 2020-02-10 11:02

1. 研究目的与意义(文献综述)

随着石化能源不断消耗以及环境问题的日益恶化,开发、利用新能源显得愈发重要。我国在“十三五”能源规划中便明确强调要“更加注重结构调整,推进能源绿色低碳发展”。在新能源的开发与利用中,太阳能电池的研究备受人们的重视。太阳能电池是一种将太阳能直接转换为电能的装置,其在使用过程中对环境影响小,对人体无危害,是目前利用太阳能能源的有效途径之一。其中,聚合物太阳能电池(polymer solar cells,pscs)作为第三代光伏技术,可通过溶液加工技术来实现低成本的大规模生产,应用前景良好,因而成为了研究热点。

聚合物太阳能电池的工作机制主要包括激子的形成、扩散、解离以及载流子运输与收集等过程。为了尽可能提高电池的能量转化效率,应当调节给受体材料分子结构,增加激子解离的给/受体界面面积,优化给受体比例等。因此,聚合物太阳能电池器件多采用体异质结结构,即p型聚合物给体和n型受体共混形成给受体互穿纳米网络结构活性层。在这种结构中,给受体材料的选择、设计与优化是提高能量转化效率的最为可行的方法之一。

目前聚合物太阳能电池中常使用的受体材料主要包括富勒烯衍生物和其他受体材料。前者具有优良溶解性、高电子转移率等优点,但其结构难以改变使得吸收光谱窄且不可调;后者则可以克服上述缺点,因此逐渐成为现今的研究热点,但是以富勒烯作为受体材料仍然在聚合物太阳能电池研究领域占有一席之地。给体材料的选择较多,其中以联噻吩及其衍生物合成的聚合物给体材料与富勒烯受体材料共混能实现更好的能级匹配,促进激子解离,因此制备的器件是现今聚合物:富勒烯太阳能电池器件中的高能量转换效率代表体系。最近,聚合物:富勒烯太阳能电池的最高能量转换效率已接近12%,聚合物:非富勒烯小分子受体叠层太阳能电池的能量转换效率已超过15%。有文献指出,聚合物太阳能电池的最高能量转换效率在将来能突破20%,甚至更高。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

2.1 基本内容

(1)材料制备:以不同烷氧链修饰的三联噻吩为给体单元与二噻吩苯并噻二唑衍生物受体单元共聚,制备两种新型的d-a型聚合物给体材料。

(2)材料表征:对上述制备的两种新型的d-a型聚合物给体材料为主体构造的有机太阳能电池进行结构表征和电化学性能测试,通过1h nmr、13c nmr、afm等表征手段对其结构组成及形貌进行分析,并采用uv-vis、cv等测试技术对其光、电性能进行系统评估。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究计划与安排

第1-3周:查阅相关文献资料,完成英文翻译。明确研究内容,了解研究所需原料、仪器和设备。确定技术方案,并完成开题报告。

第4-11周:按照设计方案,制备2种以不同烷氧链修饰的三联噻吩为给体单元的新型聚合物给体材料。

第12-13周:采用nmr、afm、uv-vis、cv等测试技术对材料的物相、显微结构、光电性能进行测试。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

[1] zhao j, li y, yang g, et al. efficient organic solar cells processed from hydrocarbon solvents[j]. nature energy, 2016, 1(2): 15027.

[2] 崔勇, 姚惠峰, 杨晨熠, 等. 具有接近15%能量转换效率的有机太阳能电池[j]. 高分子学报, 2018, (2): 223-230.

[3] xiao s, zhang q, you w. molecular engineering of conjugated polymers for solar cells: an updated report[j]. advanced materials, 2017, 29(20): 1601391.

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。