CuInS2敏化ZnO纳米棒薄膜的制备与表征开题报告

 2020-02-10 11:02
1.目的及意义(含国内外的研究现状分析)

能源与人类社会的生存与发展休戚相关。二十世纪现代工业突飞猛进的发展,以及人们生活水平和生活质量的提高使得能源需求日趋紧张,并对能源提出了更高的要求[1] 。风能、潮汐能、沼气能、太阳能等新能源的开发和利用已逐步渗透到人们的生活中,其中太阳能是太阳内部高温核聚变反应所释放的辐射能,是一种取之不尽、用之不竭的可再生能源[2] 。在太阳能的利用中,发展较快也较多的是利用光伏效应制成的太阳电池。据估计,一年内到达地球表面的太阳能总量是目前世界主要探明能源储量的一万倍。太阳能不仅是一种取之不尽,用之不竭的能源,同时,也是清洁能源、无污染,不影响地球的生态平衡等特点,而这些是常规能源无法比拟的,因此具有独特的优势和广阔的开发前景。正因为如此,世界各国(特别是西方发达国家)都不遗余力地对太阳能电池进行研究与开发。

太阳电池是直接把太阳辐射能转换成电能的装置,它是基于半导体器件的光生伏打效应的原理进行能量转换的。19世纪50年代,Bell实验室制备了首个晶体硅太阳电池,能量转换效率达6%左右[3],在过去的几十年中,硅电池得到了很快的发展,光电转化效率从上世纪年代贝尔实验室的6%发展到如今的26.3%[4]。然而,单晶硅电池的高成本限制了其大面积应用,如制造过程中的高能耗(髙温、高真空)、硅材料的纯度要求高(99.999%)、材料用量大(500μm以上才具有光伏效应),并且不易进行大面积柔性加工。总的说来,硅电池高昂的成本限制了其大规模使用和民用化。

为降低成本,基于薄膜及溶液沉积技术的第二代太阳电池应运而生。目前,第二代太阳电池主要包括无机薄膜太阳能电池、染料敏化太阳能电池(DSSC)和聚合物太阳能电池(PSCs)。第二代太阳电池的主要特点是薄膜化,成本较第一代电池低,这是由于光电材料薄膜层的应用大大减小了半导体材料的消耗,并且利用溶液沉积技术制备的电池器件,为大面积低价太阳电池的制作提供了可能,但不足之处是效率较第一代电池明显降低。其中,目前研究较多的无机薄膜太阳电池主要有非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CuInGaSe)和砷化镓(GaAs)等材料制作的电池。碲化镉(CdTe)及铜铟镓硒(CuInGaSe)是很有希望的高效薄膜太阳电池材料。如CdTe薄膜太阳能电池实验室最高转换效率可达到22.1%,大面积电池组件的转换效率最高可达到18.6%,均由First Solar公司研发制得[5-6]。CuInGaSe薄膜太阳能电池实验室最高效率达到22.9%[5],由SolarFrontier制得;大面积电池组件效率最高达到18.72%[6],由汉能公司制得。但是,CdTe中的Cd是一种对人体有害的物质,而CuInGaSe中的Se在地壳中的含量非常稀少,并且进行大面积精确控制的工艺也非常复杂。器件制作工艺复杂、成本昂贵,这些都不利于器件的大规模制作和应用。而DSSC存在染料成本高和稳定性不佳的问题。

您需要先支付 5元 才能查看全部内容!立即支付

该课题毕业论文、开题报告、外文翻译、程序设计、图纸设计等资料可联系客服协助查找,微信号:bysjorg 、QQ号:3236353895;