登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

P型单晶硅电池性能的模拟研究任务书

 2020-05-01 08:05  

1. 毕业设计(论文)的内容和要求

目前,单晶硅太阳能电池具有转换效率高、性能稳定等特点而得到广泛应用。

单晶硅商业组件的效率在最近五年不停攀升,效率已经超过20%,使光伏发电成本不断下降。

但未来进一步提升单晶硅电池效率会越来越困难,因此如何精确优化电池工艺显得格外重要。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Green M A, Zhao J, Wang A, et al. Very high efficiency silicon solar cells-science and technology[J]. IEEE Transactions on electron devices, 1999, 46(10): 1940-1947. [2] Cruz-Campa J L, Okandan M, Resnick P J, et al. Microsystems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 551-558. [3] Cruz-Campa J L, Nielson G N, Resnick P J, et al. Ultrathin flexible crystalline silicon: Microsystems-enabled photovoltaics[J]. IEEE Journal of Photovoltaics, 2011, 1(1): 3-8. [4] Descoeudres A, Barraud L, De Wolf S, et al. Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment[J]. Applied Physics Letters, 2011, 99(12): 123506. [5] Hirata K, Saitoh T, Ogane A, et al. Selective emitter formation by laser doping for phosphorous-doped n-type silicon solar cells[J]. Applied Physics Express, 2011, 5(1): 016501. [6] Zhang Y, Yoshihara T, Yamada A. Synthesis of Cu2ZnSn (S, Se) 4 nanoparticles for application in low-cost solar cells[J]. Applied Physics Express, 2011, 5(1): 012301. [7] Mavrokefalos A, Han S E, Yerci S, et al. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications[J]. Nano letters, 2012, 12(6): 2792-2796. [8] Yang R, Buonassisi T, Gleason K K. Organic vapor passivation of silicon at room temperature[J]. Advanced Materials, 2013, 25(14): 2078-2083. [9] Zhang Y, Chen X, Ouyang Z, et al. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating[J]. Optical Materials Express, 2013, 3(4): 489-495. [10] Xie S, Ouyang Z, Jia B, et al. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells[J]. Optics express, 2013, 21(103): A355-A362. [11] Chen X, Jia B, Zhang Y, et al. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets[J]. Light: Science Applications, 2013, 2(8): e92. [12] Feldmann F, Bivour M, Reichel C, et al. A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF 82%[C]//28th European PV solar energy conference and exhibitionParis, France. 2013. [13] Young D L, Nemeth W, Grover S, et al. Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides[C]//Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th. IEEE, 2014: 1-5. [14] Smith D D, Cousins P, Westerberg S, et al. Toward the practical limits of silicon solar cells[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1465-1469. [15] Li Y, Li M, Fu P, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells[J]. Scientific reports, 2015, 5: 11532. [16] Green M A. The passivated emitter and rear cell (PERC): From conception to mass production[J]. Solar Energy Materials and Solar Cells, 2015, 143: 190-197. [17] Bullock J, Hettick M, Geissb#252;hler J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature Energy, 2016, 1(3): 15031.

3. 毕业设计(论文)进程安排

2018.12.17-2019.1.11, 文献调研,完成开题报告 1.12-1.18,完成英文翻译 2.25-4.7,深刻理解单晶硅太阳能电池原理,学习和掌握PC1D软件 4.8-5.5,进行模拟、初步分析结果和中期检查 5.6-5.26,进一步完善模拟结果,并分析全部数据 5.27-6.2,论文撰写 6.3-6.6,论文修改 6.7-6.10,准备PPT,答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图