登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

离心工艺对PVP限域纳米Mg95Ni5合金的储氢性的影响及其机理任务书

 2020-07-01 08:07  

1. 毕业设计(论文)的内容和要求

通过氢化燃烧合成和高能机械球磨制备的Mg95Ni5活性高、容量高、低温储氢性能优异:373 K,100 s内,首次吸氢量达到6.44 wt%。但是完全放氢仍需523 K以上,373 K吸氢只能维持几个循环。其原因吸放氢热效应导致纳米颗粒再结晶长大,高活性产物易被氧毒化失活。本课题对上述样品进行聚合物离心包覆处理,研究离心工艺的改变对于聚合物限域镁基结构的影响,探索最佳的离心工艺及研究该样品的储氢性能并分析其内在联系。

此外,本论文的要求:翻译3000字左右的英文文献一篇。广泛查阅国内外相关文献,撰写文献综述和开题报告。在实验的基础上,整理和分析数据,系统研究不同工艺对限域结构储氢作用机理进行深层次的分析,做出合理解释。撰写论文。

2. 参考文献

[1] Targets for onboard Hydrogen storage systems for Light Duty Vehicles, US DoE. [2] 陈玉安,周上祺,丁培道. 镁基储氢合金制备方法研究[J].材料导报,2003,17 (10) : 20-23.[3] 张羊换. 快淬低钴、无钴AB5型和La2Mg2Ni系贮氢合金结构及电化学性能研究[D] . 钢铁研究总院博士学位论文, 2004. [4]Yanhui Zhang, Lifang Jiao, Yanzhong Hao et al. Study on the electrochemical properties of Mg0.8Ti0.1Al0.1#8722;xPdxNi (x = 0.02#8211;0.08) hydrogen storage alloys[J]. Int. J. Hydrogen Energy, 2010, 35(15):7815-7820.[5] Yuan H T, Cao R, Wang L B. Characteristic of a new Mg2Ni hydrogen storage system: Mg2-xTixNi1-yMny (0 lt; x lt; 1, 0 lt; y lt; 1) alloys[J].J. Alloys Comp., 2001, 322:246-248. [6] L. Li, T. Akiyama, J. Yagi et al. Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4 [J]. Intermetallics, 1999, 7: 201-205. [7] AKIYAMA Tomohiro, ISOGAI Hiromichi, YAGI Junichiro. Hydriding combustion synthesis for the production of hydrogen storage alloy [J]. J. Alloys and Compounds, 1997, 252 (1): 1 #8211; 4. [8]Li L L, Peng B, Ji W Q et al. A quantum chemical study on magnesium (Mg)/magnesium #8211;hydrogen (Mg-H) nanowires [J]. Journal of Alloys and compounds, 2009, 484(1/2): 308-313. [9]Wagemans R W P, van Lenthe J H, de Jongh P E et a1. Hydrogen Storage in Magnesium Clusters: Quantum Chemical Study [J]. P. J Am Chem Soc, 2005, 127: 16675-16680. [10] Guanglin Xia, Yingbin Tan, Dan Li et al. Hierarchical porous Li2Mg(NH)2@C nanowires with long cycle life tpwards stable hydrogen storage [J]. Scientific Reports, 2014, 4: 6599. [11] Weiyu Xie, Damien J. West, Yiyang Sun et al. Role of nano in catalysis: Palladium catalyzed hydrogen desorption from nanosized magnesium hydride [J]. Nano Energy , 2013, 2, 742#8211;748. [12] Liu T, Chen CG, Wang F et al. Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature [J]. J. Power Sources, 2014, 267, 69-77. [13] Hu F, Zhang YH, Zhang Y et al. Electrochemical and kinetic study of as-cast and as-quench Mg2Ni-type hydrogen storage alloys [J]. J. Materials Research, 2013, 28(19), 2701-2708.[14] Fang F, Zhao QY, Wu WY et al. Achieving an H-induced transparent state in 200nm thick Mg-Ti film by amorphization [J]. J. Applied Physics, 2014, 115, 014304.[15] Floriano R., Leiva D. R., Deledda S. et al. MgH2-based nanocomposites prepared by short-time high energy ball milling followed by cold rolling: A new processing route [J]. J. Hydrogen energy, 2014, 39, 4404-4413. [16] Claudia Zlotea, Michel Latroche. Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2013, 439, 117#8211;130. [17] Lim, D.W, Yoon, et al. Magnesium Nanocrystals Embedded in a Metal#8211;Organic Framework: Hybrid Hydrogen Storage with Synergistic Effect on Physi- and Chemisorption [J]. Angewandte Chemie, 2012, 124(39): 9952-9955. [18] Konarova M, Tanksale A, Beltramini JN et al. Effects of nano-confinement on the hydrogen desorption properties of MgH2 [J]. Nano Energy, 2013, 2, 98-104. [19] Yana Liu, Jianxin Zou, Xiaoqin Zeng et al. Study on hydrogen storage properties of Mg nanoparticles confined in carbon aerogels [J]. J. Hydrogen energy, 2013, 38, 5302-5308. [20] Jianxin Zou, Sheng Long, Lifu Zhang et al. Hydrogen Sorption Behaviors of a Core#8211;Shell Structured Mg@Fe Composite Powder [J]. Materials transactions, 2014, 55, 1156-1160.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2017.12.16~ 2018.01.13 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献,完成外文翻译,并撰写开题报告; 2018.02.25 ~ 2018.03.15 研究离心工艺对聚合物限域结构的影响; 2018.03.16 ~ 2018.04.10 研究不同工艺制备的样品对其储氢性能的影响; 2018.04. 11~ 2018.04.20 中期数据整理及答辩; 2018.04.21 ~ 2018.05.15 通过不同表征方法探索不同工艺对储氢性能影响的内在机理; 2018.05.16~ 2018.05.29 数据处理及规律总结,撰写毕业论文; 2018.05.30~ 2018.06.08 完成毕业论文及答辩; 2018.06.09~ 2018.06.14 总结、归档。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图