登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

铝在镁铝合金HCS过程中的物相演变研究任务书

 2020-05-26 08:05  

1. 毕业设计(论文)的内容和要求

mg由于储氢量高(mgh2的理论储氢量为7.6 wt.%)、资源丰富,被视为一种很有应用前景的储氢材料。

但纯mg在吸放氢过程中热效应显著(吸氢过程为放热反应,放氢过程为吸热反应)、氢化物形成焓较高(mgh2的形成焓为74.7 kj/mol)、动力学缓慢等问题一直是限制其实用化进程的关键。

本文选择mg-al合金作为研究对象,是因为mg-al合金能够与氢发生可逆的歧化氢化反应,生成mgh2和al,原位生成的al具有良好的热传导性能(al的导热系数为235 w/(m k),mg的导热系数为160 w/(m k)),能在放氢过程中起关键作用:一方面有效促进热量的传递,显著提高mgh2放氢动力学;另一方面al通过与mg合金化,使mg-h键失稳,从而降低mgh2的脱氢焓,改善放氢热力学性能。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] 申泮文. 21世纪的动力:氢与氢能 [M]. 天津: 南开大学出版社, 2000. [2] Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges [J]. Renew. Sust. Energ. Rev., 2012, 16(5): 3024-3033. [3] Li Z. Progress and problems in hydrogen storage methods [J]. Renew. Sust. Energ. Rev., 2005, 9: 395-408. [4] 张志强, 郑军卫. 氢经济社会发展前瞻及我国的对策 [J]. 科学对社会的影响, 2006 (3): 21-25. [5] 贡长生, 张克立. 新型功能材料 [M]. 北京: 化学工业出版社, 2001. [6] 毛宗强. 世界各国加快氢能源市场化步伐 [J]. 中外能源, 2010, 15(7): 29-34. [7] 中华人民共和国国务院. 国家中长期科学和技术发展规划纲要 (2006-2020年) [EB/OL]. http://www.gov.cn/jrzg/2006-02/09/content_183787_5.htm, 2006-02-09. [8] Puru J. Materials for hydrogen storage: Past, Present and Future [J]. J. Phys. Chem. Lett., 2011, 2: 206-211. [9] Billur S, Farida L, Micheel H. Metal hydride materials for solid hydrogen storage: A review [J]. Int. J. Hydrogen Energy, 2007, 32: 1121-1140. [10] Z#252;ttel A. Hydrogen storage methods [J]. Naturwissenschaften, 2004, 91:157-172. [11] 胡子龙. 贮氢材料 [M]. 北京: 化学工业出版社, 2002. [12] Schlapbach L, Z#252;ttel A. Hydrogen-storage materials for mobile application [J]. Nature, 2001, 414: 353-358. [13] 张健. 镁及其合金氢化物吸放氢性能及电子机制研究 [D]. 长沙: 湖南大学, 2009. [14] 叶素云. 纳米化对Mg基储氢合金的热力学和储氢性能的影响 [D]. 广州: 华南理工大学, 2010. [15] 董汉武. 若干镁基储氢体系的相结构分析及其储氢性能 [D]. 广州: 华南理工大学, 2011. [16] Wei L J, Cui Z W, Zhu Y F, et al. Catalytic effect of multi-wall carbon nanotubes supported nickel on hydrogen storage properties of Mg99Ni prepared by hydriding combustion synthesis [J]. Mater. Trans., 2014, 55: 1149-1155. [17] Kalisvaart W P, Harrower C T, Haagsma J, et al. Hydrogen storage in binary and ternary Mg-based alloys: a comprehensive experimental study [J]. Int. J. Hydrogen Energy, 2010, 35: 2091-2103. [18] Liu Y, Alexander R, Rigos S, et al. A study of parylene coated Pd/Mg nanoblabes for reversible hydrogen storage [J]. Int. J. Hydrogen Energy, 2013, 38(12): 5019-5029. [19] Ruminski A M, Bardhan R, Brand A, et al. Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions [J]. Energy Environ. Sci., 2013, 6: 3267-3271. [20] Shao H Y, Ma W G, Kohno M, et al. Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures [J]. Int. J. Hydrogen Energy, 2014, 39(18): 9893-9898. [21] Liu Y N, Zou J X, Zeng X Q, et al. Study on hydrogen storage properties of Mg-X (X=Fe, Co, V) nanocomposites co-precipitated from solution [J]. RSC Adv., 2015, 5, 7687-7696. [22] Li Y, Tao Y, Ke D D, et al. Facile synthesis of Mo-Ni particles and their effect on the electrochemical kinetic properties of La-Mg-Ni-based alloy electrodes [J]. J. Alloys Compd., 2014, 615: 91-95. [23] Lin H J, Ouyang L Z, Liu J W, et al. Phase transition and hydrogen storage properties of melt-spun Mg3LaNi0.1 alloy [J]. Int. J. Hydrogen Energy, 2012, 37(1): 1145-1150. [24] Yuan J G, Zhu Y F, Li L Q, Highly efficient bimetal synergetic catalysis of multi-wall carbon nanotubes supported palladium and nickel on hydrogen storage of magnesium hydride [J]. Chem. Commun., 2014, 50(50): 6641-6644. [25] Wagemans R W P, Van-Lenthe J H, De-Jongh P E, et al. Hydrogen storage in magnesium clusters: quantum chemical study [J]. J. Am. Chem. Soc. 2005, 127: 16675-16680. [26] Jain I P, Chhagan L, Jain A. Hydrogen storage in Mg: A most promising material [J]. Int. J. Hydrogen Energy, 2010, 35: 5133-5144.

3. 毕业设计(论文)进程安排

2015.12.22~ 2015.12.31:中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献; 2016.1.04 ~ 2016.1.15:撰写开题报告,开题报告答辩; 2016.3.14 ~ 2016.4.5:探索采用氢化燃烧合成法制备镁铝合金工艺; 2016.4.6 ~ 2016.4.19 :中期检查与答辩; 2016.4. 20~ 2016.5.10:测试、分析在HCS过程中产物的物相转变过程; 2016.5.11 ~ 2016.5.15:阅读相关文献,结合实验分析手段,对该现象做出合理解释; 2016.5.16~ 2016.5.29 :撰写毕业论文; 2016.5.30~ 2016.6.5:完成毕业论文及答辩; 2016.6.6~ 2016.6.14:总结、归档。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图