登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

镁基氢化物HCS MM规模化制备工艺优化任务书

 2020-05-26 08:05  

1. 毕业设计(论文)的内容和要求

氢化镁因其储氢量高(7.6 wt.%),原料来源丰富,对环境影响小等优点而被认为是一种可应用于氢燃料电池的理想储氢材料。

然而氢化镁放氢热力学性能较差,通常需要在较高温度(573 k)下才可放氢,阻碍了氢化镁的实际应用。

近年来,氢化镁水解释氢研究吸引了众多研究者,因为氢化镁水解释氢可在常温下进行,且放氢量高达15.2wt.%(或1703 ml/g)。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] Marb#225;n G, Vald#233;s-Sol#237;s T. Towards the hydrogen economy? [J]. Int. J. Hydrogen Energy, 2007, 32(12): 1625-1626. [2] Felderhoff M, Weidenthaler C, Helmolt R, et al. Hydrogen storage: the remaining scientific and technological challenges [J]. Phys. Chem. Chem. Phys., 2007, 9(21): 2643-2653. [3] Ross D K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars [J]. Vacuum, 2006, 80(10): 1084-1089. [4] Li Z. Progress and problems in hydrogen storage methods [J]. Renew. Sust. Energ. Rev., 2005, 9(4): 395-408. [5] Schlapbach L, Z#252;ttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414(15): 353-358. [6] Dillon A C, Jones K M, Bekkedahl T A, et al. Storage in single-walled carbon nanotubes [J]. Nature, 1997, 286(6623): 377-379. [7] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286(5442): 1127-1129. [8] Chen P, Wu X, Lin J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J]. Science, 1999, 285(5424): 91. [9] Fulcheri L, Schwob Y. From methane to hydrogen, carbon black and water [J]. Int. J. Hydrogen Energy, 1995, 20(3): 197-202. [10] Eyma Y M, Amy M B, Thomas A D, et al. Hydrogen generation from chemical hydrides [J]. Ind. Eng. Chem. Res., 2009, 48(8): 3703-3712. [11] Deng Z Y, Ferreira Jos#233; M F, Sakka Y. Hydrogen generation materials for portable applications [J]. J. Am. Ceram. Soc., 2006, 91(12): 3824-3834. [12] Chen P, Zhu M. Recent progress in hydrogen storage [J]. Materials Today, 2008, 11(12): 36-43. [13] Borislav B, Manfred S. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. J. Alloys Comp., 1997, 253-254: 1-9. [14] Sch#252;th F, Bogdanovic B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage [J]. Chem. Commun., 2004, 20: 2249-2258. [15] Orimo S, Nakamori Y, Eliseo J R, et al. Complex hydrides for hydrogen storage [J]. Chem. Rev., 2007, 107(10): 4111-4132. [16] Chen P, Xiong Z T, Luo J Z, et al. Interaction of hydrogen with metal nitrides and imides [J]. Nature, 2002, 420(6913): 302-304. [17] Pinkerton F E,Meisner G P, Meyer M S, et al. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8 [J]. J. Phys. Chem. B, 2005, 109(1): 6-8. [18] Hu J J, Wu G T,Liu Y F,et al. Hydrogen release from Mg(NH2)2-MgH2 through mechanochemical reaction [J]. J. Phys. Chem. B, 2006, 110(30): 14688-14692. [19] Nakamori Y, Orimo S. Destabilization of Li-based complex hydrides [J]. J. Alloys Comp., 2004, 370(L1-L2): 271-275. [20] Schlesinger H I, Brown H C, A. E. Finholt, et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen [J]. J. Am. Chem. Soc., 1953, 75(1): 215-219. [21] Demrici U B, Miele P. Sodium tetrahydroborate as energy/hydrogen carrier, its history [J]. C. R. Chimie, 2009, 12(9): 943-950. [22] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review [J]. Int. J. Hydrogen Energy, 2007, 32(9): 1121-1140. [23] Grochala W,Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen [J]. Chem. Rev., 2004, 104(3): 1283-1315. [24] van den Berg A W C, Arean C O. Materials for hydrogen storage: current research trends and perspectives [J]. Chem. Commun., 2008, 6: 668-681. [25] Z#252;ttel A. Hydrogen storage methods [J]. Naturwissenschaften, 2004, 91(4): 157-172. [26] Zhu C Y, Hosokai S, Akiyama T. Growth mechanism for the controlled synthesis of MgH2/Mg crystals via a vapor-solid process [J]. Cryst. Growth Des., 2011, 11(9): 4166-4174. [27] Martelli P, Caputo R, Remhof A, et al. Stability and decomposition of NaBH4 [J]. J. Phys. Chem. C, 2010, 114(15): 7174-7175. [28] Zhen Y D, Jos#233; M F, Yoshio S. Hydrogen generation materials for portable applications [J]. J. Am. Ceram. Soc., 2006, 91(12): 1827-1828. [29] Kreevoy M M., Jacobson R W. The rate of decomposition of sodium borohydride in basic aqueous solutions [J]. Ventron Alembic, 1979, 15: 2-3. [30] Hung A J, Tsai S F, Hsu Y Y, et al. Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation [J]. Int. J. Hydrogen Energy, 2008, 33(21): 6206-6213.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 备 注 2015.12.22~ 2015.12.31 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2016.1.04 ~ 2016.1.15 撰写开题报告,开题报告答辩 2016.3.14 ~ 2016.4.5 HCS法制备工艺探索 2016.4.6 ~ 2016.4.19 中期检查与答辩 2016.4. 20~ 2016.5.10 MM法制备高活性氢化镁 五一放假 2016.5.11 ~ 2016.5.15 HCS MM法制备的氢化镁水解性能测试 2016.5.16~ 2016.5.29 撰写毕业论文 2016.5.30~ 2016.6.5 完成毕业论文及答辩 2016.6.6~ 2016.6.14 总结、归档

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图