登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

改性Cu-ZSM-5直接催化分解NO任务书

 2020-05-25 11:05  

1. 毕业设计(论文)的内容和要求

氮氧化物(nox)是严重危害人类健康的大气污染物,也是导致酸雨和诱发光化学烟雾的主要原因之一。

no为主要的氮氧化物。

随着工业生产的发展和机动车数量的增加,人类向大气中排放的氮氧化物越来越多,造成了生态和生活环境的严重恶化,采取有效的脱硝措施,消除氮氧化物的污染已成为当前大气污染治理中最重要的课题之一。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1]. Kustova, M.Y., et al., Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts: Improved performance with hierarchical zeolites. Applied Catalysis B: Environmental, 2006. 67(1-2): 60-67. [2]. Imanaka, N. and T. Masui, Advances in direct NOx decomposition catalysts. Applied Catalysis A: General, 2012. 431-432: 1-8. [3]. Zhang, Z., et al., Characterization and catalytic activity for the NO decomposition and reduction by CO of nanosized Co3O4. Journal of Alloys and Compounds, 2005. 392(1-2): 317-321. [4]. J. Zawadzki., et al., Adsorption and decomposition of NO on carbon and carbon-supported catalysts.Carbon,2002.40:119-124 [5]. J.Z. Luo.,et.al., The decomposition of NO on CNTs and 1 wt% Rh/CNTs.Catalysis Letters,2000.66:91-97 [6]. Tsujimoto, S., T. Masui and N. Imanaka, Fundamental Aspects of Rare Earth Oxides Affecting Direct NO Decomposition Catalysis. European Journal of Inorganic Chemistry, 2015. 2015(9): 1524-1528. [7]. Doi, Y., M. Haneda and M. Ozawa, Direct decomposition of NO on Ba catalysts supported on rare earth oxides. Journal of Molecular Catalysis A: Chemical, 2014. 383-384: 70-76. [8]. Zhu, Y., et al., Direct NO decomposition over La2#8722;xBaxNiO4 catalysts containing BaCO3 phase. Applied Catalysis B: Environmental, 2008. 82(3-4): 255-263. [9]. Masui, T., et al., Direct NO decomposition over C-type cubic Y2O3#8211;Pr6O11#8211;Eu2O3 solid solutions. Catalysis Today, 2015. 242: 338-342. [10]. Gan, L., et al., La0.7Sr0.3Mn0.8Mg0.2O3#8722;δ perovskite type oxides for NO decomposition by the use of intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2015. 628: 390-395. [11]. Chen, B., et al., Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: From experiment to theory. Catalysis Today, 2011. 175(1): 245-255. [12]. Li, Q., Y. He and R. Peng, Graphitic carbon nitride (g-C3N4) as a metal-free catalyst for thermal decomposition of ammonium perchlorate. RSC Adv., 2015. 5(31): 24507-24512. [13]. Zhu, J., et al., Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chemical Communications, 2010. 46(37): 6965. [14]. Grzybek, T., et al., Nitrogen-promoted active carbons as DeNOx catalysts. Catalysis Today, 2008. 137(2-4): 228-234. [15]. Xu, J., et al., A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Physical Chemistry Chemical Physics, 2013. 15(13): 4510. [16]. Facile one-step room-temperature synthesis of Mn-based spinel nanoparticles for electro-catalytic oxygen reduction. [17]. Zhu, Y., et al., Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. J. Mater. Chem. A, 2015. 3(22): 11725-11729. [18]. Yao, Y., et al., Graphene cover-promoted metal-catalyzed reactions. Proceedings of the National Academy of Sciences, 2014. 111(48): 17023-17028. [19]. Yang, T., et al., N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. J. Mater. Chem. A, 2014. 2(42): 18139-18146. [20]. Chen, S., et al., N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy Environmental Science, 2013. 6(12): 3693. [21]. Jiao, Y., et al., Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadmap to Achieve the Best Performance. Journal of the American Chemical Society, 2014. 136(11): 4394-4403. [22]. Liang, Y., et al., Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012. 134(38): 15849-15857. [23]. Estephane, J., et al., CO2 reforming of methane over Ni#8211;Co/ZSM5 catalysts. Aging and carbon deposition study. International Journal of Hydrogen Energy, 2015. 40(30): p. 9201-9208. [24]. Tamiyakul, S., et al., Conversion of glycerol to aromatic hydrocarbons over Zn-promoted HZSM-5 catalysts. Catalysis Today, 2015. 256: p. 325-335. [25]. Mart#237;nez-Hern#225;ndez, A., G.A. Fuentes and S.A. G#243;mez, Selective catalytic reduction of NOx with C3H8 using Co-ZSM5 and Co-MOR as catalysts: A model to account for the irreversible deactivation promoted by H2O. Applied Catalysis B: Environmental, 2015. 166-167: p. 465-474. [26]. Nakhostin Panahi, P., et al., Study of M-ZSM-5 nanocatalysts (M: Cu, Mn, Fe, Co #8230;) for selective catalytic reduction of NO with NH3: Process optimization by Taguchi method. Chinese Journal of Chemical Engineering, 2015. 23(10): p. 1647-1654. [27]. Rostamizadeh, M. and A. Taeb, Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP). Journal of Industrial and Engineering Chemistry, 2015. 27: p. 297-306. [28]. Wang, J., et al., Photocatalytic reduction of CO2 to energy products using Cu#8211;TiO2/ZSM-5 and Co#8211;TiO2/ZSM-5 under low energy irradiation. Catalysis Communications, 2015. 59: p. 69-72. [29]. Wang, M., Z. Wu and L. Dai, Graphitic carbon nitrides supported by nitrogen-doped graphene as efficient metal-free electrocatalysts for oxygen reduction. Journal of Electroanalytical Chemistry, 2015. 753: p. 16-20. [30]. Seyed Shirazi, S.F., et al., Nitrogen doped activated carbon/graphene with high nitrogen level: Green synthesis and thermo-electrical properties of its nanofluid. Materials Letters, 2015. 152: p. 192-195.

3. 毕业设计(论文)进程安排

起讫日期 设计(论文)各阶段工作内容 15.12.22~15.12.26 课题任务书 15.12.27~16.1.15 文献综述、英文翻译与开题报告 16.2.20~16.3.1 试验材料准备 16.3.1~16.3.15 设计实验方案、进行实验 16.3.15~16.5.2 实验 16.5.3~16.5.8 实验、中期答辩 16.5.9~16.5.30 实验、整理实验数据、毕业论文撰写 16.5.31~16.6.10 毕业论文撰写、答辩

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图