登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 材料类 > 材料化学 > 正文

ZIF67的可控制备研究及其衍生碳的合成及催化性能研究文献综述

 2021-12-12 09:12  

金属有机框架minus;光催化和光热光谱分析催化

摘 要

为了满足日益增长的全球能源需求,将太阳能转换成化学/热能是非常有希望的。光媒介催化,包括光催化(有机转换、水分离,减少二氧化碳等)和光热光谱分析中起重要作用催化太阳能化学/热能转换通过光minus;物质的相互作用。传统的半导体催化剂的主要挑战包括太阳光利用率不足,电荷载体复合,活性中心的有限接触,尤其是理解结构minus;活动关系的困难。minus;金属有机框架(MOF), 类半导体行为,最近被广泛兴趣向光催化和光热光谱分析催化因其明确的和可裁制成衣的多孔结构,高表面积,等等。这些优势是有利于理性结构调制提高光吸收和电荷分离以及其他影响,极大地帮助应对上述挑战,特别是促进结构minus;活动关系的建立。因此,对这一研究领域进行总结,深入了解基于MOF的光催化和光热催化,对加速未来的发展具有越来越重要的意义。在这个帐户,我们总结了最新进展在这两个直接相关的应用程序中,光催化和光热光谱分析催化,主要关注在我们实验室的结果。鉴于MOF的独特结构特点,我们把重点放在了理性的材料设计和性能优化组件背后和理解相关机制增强的活动。这篇文章首先介绍了催化太阳能转化的概况。我们解释了为什么MOFs是很有前途的光催化剂,并举例说明了其半导体般的行为。更重要的是,我们表明,光催化提供一个强大的平台来研究光催化,涉及的三个主要过程,即光收获,电子minus;孔分离,和表面氧化还原反应,能合理改善。与此同时,minus;活动关系结构和电荷分离动力学在这部分。此外,还介绍了基于等离子体金属和/或MOFs的光热效应,以及光驱动的活性位点电子态优化,以增强多相有机反应的光热催化MOFs。最后,简要展望了MOF光催化和光热催化目前面临的挑战和未来的发展。相信这篇文章对基于mf催化剂的太阳能转化有重要的理解和启示。

关键词:光催化;MOF;ZIF-67;

Metalminus;Organic Frameworks for Photocatalysis andPhotothermal Catalysis

ABSTRACT

To meet the ever-increasing global demand for energy, conversion of solar energy to chemical/thermal energy is very promising. Light-mediated catalysis, including photocatalysis (organic transformations, water splitting, CO₂ reduction, etc.) and photothermal catalysis play key roles in solar to chemical/thermal energy conversion via the lightminus;matter interaction. The major challenges in traditional semiconductor photocatalysts include insufficient sunlight utilization, charge carrier recombination, limited exposure of active sites, and particularly the difficulty of understanding the structureminus;activity relationship. Metalminus;organic frameworks (MOFs), featuring semiconductor-like behavior, have recently captured broad interest toward photocatalysis and photothermal catalysis because of their well-defined and tailorable porous structures, high surface areas, etc. These advantages are beneficial for rational structural modulation for improved light harvesting and charge separation as well as other effects, greatly helping to address the aforementioned challenges and especially facilitating the establishment of the structureminus;activity relationship. Therefore, it is increasingly important to summarize this research field and provide in-depth insight into MOF-based photocatalysis and photothermal catalysis to accelerate the future development. In this Account, we have summarized the recent advances in these two directly relevant applications, photocatalysis and photothermal catalysis, mainly focusing on the results in our lab. Given the unique structural features of MOFs, we have put an emphasis on rational material design to optimize the components and performance and to understand related mechanisms behind the enhanced activity. This Account starts by presenting an overview of solar energy conversion by catalysis. We explain why MOFs can be promising photocatalysts and exemplify the semiconductor-like behavior of MOFs. More importantly, we show that MOFs provide a powerful platform to study photocatalysis, in which the involved three key processes, namely, light harvesting, electronminus;hole separation, and surface redox reactions, can be rationally improved. Meanwhile, the structureminus;activity relationship and charge separation dynamics are illustrated in this part. In addition, MOFs for photothermal catalysis have been introduced that are based on the photothermal effect of plasmonic metals and/or MOFs, together with light-driven electronic state optimization of active sites, toward enhanced heterogeneous organic reactions. Finally, our brief outlooks on the current challenges and future development of MOF photocatalysis and photothermal catalysis are provided. It is believed that this Account will afford significant understanding and inspirations toward solar energy conversion over MOF-based catalysts.

Key words:Photocatalysis;MOF;ZIF-67;

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图