登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 环境科学与工程类 > 水质科学与技术 > 正文

提高废旧橡胶基颗粒活性炭性能的研究毕业论文

 2020-07-05 05:07  

摘 要

废旧橡胶轮胎处理处置不当,不仅会造成严重的资源浪费,而且还会严重危害自然环境以及人体健康。橡胶轮胎的常规活化方法所制备的颗粒活性炭比表面积小、吸附性能不佳。

本文主要针对以废旧轮胎为原料而制备的具有较强吸附性能活性炭的改性问题进行讨论,探索不同实验条件下,氯化锌活化法所制活性炭对不同分子粒径废水的吸附效果。重点考察了高温活化温度、高温活化时间、橡胶粒径以及污染物分子粒径四个因素对废旧橡胶基颗粒制活性炭吸附效果的影响,通过测定其吸附量、扫描电镜等方法综合探究废旧橡胶基颗粒活性炭的最优性能。

结果表明,废旧橡胶基活性炭的吸附效果受高温活化温度影响最大,受橡胶粒径影响也很大,受高温活化时间影响不太显著。高温活化温度在800℃前随温度升高,吸附量也在逐步升高,而超过800℃后吸附量不再有显著提高;高温活化时间对吸附量的影响较小在900℃高温活化3h下粒径分别为3-6mm、1-3mm、0.25mm的橡胶基活性炭对亚甲基蓝的最大吸附量依次为13.87mg/g、19.34mg/g、21.98m g/g;0.25mm的橡胶基活性炭对苯酚的最大吸附量为63mg/g;对于不同污染物分子,氯化锌活化法所制活性炭对以苯酚为代表的小分子物质吸附效果好于以亚甲基蓝为代表的大分子物质。

初步获得了氯化锌活化法处理的优化条件为:预活化温度450℃,高温活化温度800℃,反应时间3h,该条件下对亚甲基蓝的最大吸附量为22.32mg/g,对苯酚的最大吸附量为74mg/g。通过研究废旧橡胶制备颗粒活性炭的性能条件及影响规律,可为化学活化法处理废旧橡胶轮胎的废物资源化提供实验依据。

关键词:废旧橡胶轮胎 氯化锌 废水处理 活化法

Abstract

Improper disposal of waste rubber tires will not only cause serious waste of resources, but also seriously damage the natural environment and human health. The conventional activated method of rubber tire has small specific surface area and poor adsorption performance.

In this paper, the modification of activated carbon with strong adsorption properties prepared from waste tires was discussed, and the adsorption effect of activated carbon on different molecular size wastewater under different experimental conditions was explored. The effects of four factors, such as the activation temperature of high temperature, the activation time of high temperature, the particle size of rubber and the particle size of the pollutants on the adsorption of activated carbon from waste rubber based particles, were investigated. The optimal performance of the waste rubber based granular activated carbon was investigated by measuring the adsorption capacity and scanning electron microscope.

The results show that the adsorption effect of waste rubber based activated carbon is most affected by the activation temperature at high temperature, and is greatly influenced by the particle size of rubber, and it is not significantly affected by the activation time of high temperature. The adsorption capacity of the high temperature activation temperature increases with the temperature of 800℃, and the adsorption capacity is gradually increased, and the adsorption capacity is no longer improved after 800℃. The activation time of different high temperature is basically the same, and the maximum adsorption capacity of rubber based activated carbon with 3-6mm, 1-3mm and 0.25mm, respectively, at 900℃ under high temperature activated 3h, is 13.87mg/g, 19.34mg/g, 21.98m g/g; the maximum adsorption capacity of the rubber based activated carbon for 0.25mm to phenol is 63mg/g; for different pollutants, the activated carbon made by the activated carbon of zinc chloride has better adsorption effect on the small molecular substances represented by phenol than the large molecular substances represented by methylene blue.

The optimum conditions for the treatment of zinc chloride activation are as follows: the pre activation temperature is 450℃, the activation temperature is 800℃and the reaction time is 3h. The maximum adsorption capacity of methylene blue is 22.32mg/g, and the maximum adsorption amount to phenol is 74mg/g. By studying the performance conditions and influence rules of the activated carbon prepared from waste rubber, the experimental basis for the disposal of waste rubber tires by chemical activation method is provided.

Key words: Waste rubber tyres, zinc chloride, waste water treatment, activation method

目录

摘要 1

Abstract 2

第一章 绪论 1

1.1前言 1

1.2废旧轮胎常见处理方法及现状 1

1.2.1活化法原理[8,13-15] 1

1.2.2化学活化法 1

1.2.3物理活化法 2

1.3.影响活性炭的制备因素 3

1.3.1活化温度 3

1.3.2浸渍比 3

1.3.3高温持续时间[6,19-21] 4

1.4活性炭所吸污染物的检测方法 4

1.4.1紫外-可见光光度法 4

1.4.2气相色谱法 4

1.5本文研究意义和研究内容 5

1.5.1研究意义 5

1.5.2研究内容 5

第二章 实验部分 6

2. 1 主要仪器、试剂 6

2.1.1仪器 6

2.1.2试剂 6

2.1.3流程图 6

2.2实验步骤 7

第三章 实验结果与分析 9

3.1 实验现象 9

3.2 实验结果分析 9

3.2.1标准曲线 9

3.2.2高温活化温度对吸附效果的影响 10

3.2.3高温活化时间对吸附效果的影响 12

3.2.4原料橡胶粒径对吸附效果的影响 13

3.2.5污染物分子粒径对吸附效果的影响 14

3.3晶体结构和孔隙结构分析 15

3.3.1 扫描电镜(SEM)分析 15

3.3.2 X衍射光谱(XRD)分析 17

3.4 橡胶基颗粒活性炭吸附效果 18

第四章 总结与展望 19

4.1 总结 19

4.2 展望 19

参考文献 21

致谢 24

第一章 绪论

1.1前言

随着全球汽车工业的迅速发展,轮胎工业也在突飞猛进,这无疑为人类社会文明的发展作出了积极的贡献,但同时也造成了大量废旧轮胎的堆积和对环境的污染。据估计[1],世界废弃轮胎的产量总计达到每年100亿个,我国废旧橡胶轮胎年产量超过3亿条,仅次于美国和日本,居世界第三位。废旧橡胶轮胎处理处置不当,不仅会造成严重的资源浪费,而且还会给空气、水和土壤等带来严重污染,危害人体健康。废旧橡胶轮胎中含有大量的碳元素,是潜在的制备活性炭的大宗原料[2]。如何有效地回收和利用废旧轮胎,生产新的化工产品,变废为宝,是目前人们研究的课题。

1.2废旧轮胎常见处理方法及现状

1.2.1活化法原理[3-6]

活化是一种活化剂与原料进行复杂化学反应的过程,是通过选择合适的化学试剂,在一定的条件下与含碳丰富的原料发生复杂的化学反应,达到在炭中制造孔隙目的的过程。活化过程中所选择的化学试剂统称为活化试剂,简称为活化剂。掌握活化机理就是理解活化剂与原料之间发生的各种化学反应以及它们与孔隙发展的内在联系。根据活化剂种类,通常可以将制备活性炭的活化方法分为气体活化法、化学药品活化法和碱金属化合物活化法等,其中前两种是目前最主要的工业活化方法。

1.2.2化学活化法

化学活化法主要是选择固体或液体化学试剂作为活化剂,通过活化剂溶液与含碳有机原料的混合浸渍,在升温过程中通过复杂的化学反应,将浸渍了活化剂的含碳原料转化为含有大量活化剂及其衍生物的炭化料,然后通过一定方式,除去炭化料中的大量活化剂及其衍生物,从而遗留下大量的空隙,最终达到制造发达孔隙的目的。化学药品活化法所使用的活化剂包括磷酸、硝酸和硫酸等质子酸,以及氯化锌、氯化铁、氯化铝、硫酸钠、碳酸钾、碳酸钠、硫化钾、硫化钠等各

种盐类化合物,其中能够有效制造发达孔隙结构的主要有磷酸、硫酸、氯化锌、碳酸钾、碳酸钠、硫化钾等化合物[13]。由于各种原因,氯化锌和磷酸是目前活性炭制备工业应用的两种活化剂,依据活化剂种类,其制备工艺分别称为氯化锌活化法和磷酸活化法。

您需要先支付 80元 才能查看全部内容!立即支付

企业微信

Copyright © 2010-2022 毕业论文网 站点地图